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Myelin is classically known for its role in facilitating nerve conduction. However, recent

work casts myelin as a key player in both proper neuronal circuit development and

function. With this expanding role comes a demand for new approaches to characterize

and perturb myelin in the context of tractable neural circuits as they mature. Here we

argue that the simplicity, strong conservation, and clinical relevance of the vestibular

system offer a way forward. Further, the tractability of the larval zebrafish affords a

uniquely powerful means to test open hypotheses of myelin’s role in normal development

and disordered vestibular circuits. We end by identifying key open questions in myelin

neurobiology that the zebrafish vestibular system is particularly well-suited to address.
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1. INTRODUCTION

Myelin’s primary claim to fame is as the structure that enables fast nerve conduction, but asmethods
and techniques have improved, a variety of findings have expanded myelin’s role. We now know
that oligodendrocytes and Schwann cells provide metabolic support (Fünfschilling et al., 2012;
Lee et al., 2012). Further, myelin plays a crucial role for neural circuit function and plasticity,
particularly during development (Makinodan et al., 2012; McKenzie et al., 2014; Xiao et al., 2016;
Steadman et al., 2020). New myelin is crucial for learning new tasks (McKenzie et al., 2014; Xiao
et al., 2016) as well as for memory consolidation (Pan et al., 2020; Steadman et al., 2020). Social
isolation leads to myelin deficits and impaired social behavior (Liu et al., 2012; Makinodan et al.,
2012) that can be rescued by promoting myelin (Liu et al., 2016). Illuminating the mechanistic
underpinnings of these new roles will require expanding the current toolkit to permit functional
assessment in combination with high resolution imaging and control of myelination (Suminaite
et al., 2019).

The vestibular circuits of zebrafish offer a number of advantages as a model system. First and
foremost both the mechanisms regulating myelination (Czopka, 2015; Ackerman andMonk, 2016)
and vestibular circuits are conserved between zebrafish and mammals (Straka and Baker, 2013).
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Secondly, there is a large tool set to targe myelin (Chung et al.,
2013; Auer et al., 2018; Neely et al., 2022) and to control
neurons in vestibular circuits (Ehrlich and Schoppik, 2017, 2019;
Schoppik et al., 2017). Due to their transparency, zebrafish
larvae can be imaged longitudinally without the need for surgical
interventions. Furthermore, vestibular circuits can be tested
behaviorally as well as electrophysiologically to assess changes in
conduction and neuronal function (Bagnall and Schoppik, 2018;
Ehrlich and Schoppik, 2018). Vestibular function improves over
time (Ehrlich and Schoppik, 2017, 2019), allowing for correlation
of behavior with myelination during development (Langworthy,
1928, 1932; Keene and Hewer, 1931) and in the context of disease
(Doty et al., 2018).

Here, we begin by highlighting recent advances in myelin
biology in the context of neural circuits relevant for vestibular
scientists. We then discuss the organization of vestibular circuits
with particular emphasis on the establishment and organization
of myelinated tracts that subserve balance behaviors of particular
interest for zebrafish scientists. Next, we review the consequences
of demyelinating diseases on balance behavior. We highlight
recent advances in zebrafish vestibular circuits, behavior and
myelin development of interest for myelin researchers interested
in vestibular circuits. We conclude by identifying open questions
inmyelin biology addressable using the larval zebrafish vestibular
system as a model.

2. MYELINATION AND CIRCUIT FUNCTION

Myelin is a fatty and electrically insulating substance that is
wrapped around axons. Myelin sheaths are interspersed with
unmyelinated gaps, the nodes of Ranvier, which are enriched
in voltage-gated sodium channels, among other molecules. This
arrangement restricts current flow to the nodes of Ranvier
enabling the fast saltatory nerve conduction and thereby
increasing conduction velocity. Myelin sheath length, myelin
thickness (Seidl, 2014) and node length (Arancibia-Cárcamo
et al., 2017) influence conduction velocity. Besides being
faster, saltatory nerve conduction is also more efficient; energy
consumption in gray matter is roughly three times higher than in
white matter (Sokoloff et al., 1977), reflecting both the efficiency
of saltatory nerve conduction and the reduced synaptic density
of white matter (Harris and Attwell, 2012). Myelinating cells
also actively provide metabolic support to the ensheathed axons
(Fünfschilling et al., 2012; Lee et al., 2012; Beirowski et al., 2014).
Lactate is transported via monocarboxylate transporters from
the oligodendrocyte to the ensheathed axon thereby supporting
axonal function. Genetic disruption of the lactate transportation
pathway may lead to axonal degeneration (Fünfschilling et al.,
2012; Lee et al., 2012) and affect auditory processing (Moore et al.,
2020).

Myelinating cells in the peripheral nervous system
are different from those in the central nervous system.
Oligodendrocytes are the myelinating cells of the central nervous
system (CNS) whereas Schwann cells myelinate axons in the
peripheral nervous system (PNS). Axons with central and
peripheral projections are myelinated by oligodendrocytes

on the central part and Schwann cells on the peripheral part
(Figure 1).

During development oligodendrocyte precursor cells (OPC)
differentiate into oligodendrocytes, forming many myelin
sheaths on several different axons. In contrast, Schwann cells
envelop many axons in their immature state and, after radial
sorting, form a myelin sheath around a single axon. There
are also non-myelinating Schwann cells that envelope many
smaller axons (Jessen and Mirsky, 2005). The differences in the
mechanisms of myelination in the PNS and CNS have been
reviewed elsewhere (Nave and Werner, 2014).

The impact of myelin on axons is not unilateral (Figure 1).
Recent work provided evidence that axonal activity can also
regulate myelination: OPC proliferation and differentiation
increase after optogenetic activation of neurons in the premotor
cortex leading to increased myelination, thicker myelin around
stimulated axons, and alterations in motor function (Gibson
et al., 2014). Similarly, chemogenetic activation of neurons results
in enhanced myelination and myelin thickness, preferentially of
stimulated axons (Mitew et al., 2018). Such activity-dependent
myelination is thought to be mediated by synaptic activity. OPCs
form synaptic contacts with axons (Bergles et al., 2000) and
axonal activity regulates their proliferation (Barres and Raff,
1993). Blocking vesicle release results in decreased numbers
of myelin sheaths per oligodendrocyte (Mensch et al., 2015),
though this effect may be restricted to particular types of neurons
(Koudelka et al., 2016).

Intriguingly, a number of recent studies have linked
myelination to key aspects of learning and memory formation.
Learning a new motor task—like running on a complex wheel—
causes differentiation of oligodendrocyte precursor cells and the
formation of new myelin in mice; when myelin formation was
blocked, learning was impaired (McKenzie et al., 2014; Xiao et al.,
2016). Complementarily, motor learning promoted recovery of
myelin in a mouse model of cuprizone induced demyelination
(Bacmeister et al., 2020). Spatial learning and contextual fear
learning is also impaired when oligodendrogenesis is blocked
(Pan et al., 2020; Steadman et al., 2020). Increased coupling of
cortical spindle oscillations and hippocampal sharp wave ripples
is important for memory consolidation (Peyrache et al., 2009; Xia
et al., 2017). Preventing oligodendrogenesis interferes with this
coupling, implicating the formation of new myelin (Steadman
et al., 2020). Conversely, age related memory decline in mice
could be rescued by promoting myelination (Wang et al., 2020),
further emphasizing important roles for oligodendrogenesis and
the formation of new myelin for learning and memory.

There are several ways in which newly added myelin can
influence neural circuits. New myelin could cause specific
changes to synchronicity or the timing of transmission making
neural circuits more efficient. It has been shown that some
axons display intermittent myelination (Tomassy et al., 2014).
These large unmyelinated gaps could serve as potential
targets/locations where adaptive myelination could sculpt the
circuit. Small changes in myelination resulting in small changes
in conduction velocity can significantly alter brain oscillations
(Pajevic et al., 2014). Consistently, inhibitory parvalbumin-
positive interneurons, which are important for oscillations
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FIGURE 1 | Myelination of axons and consequences for circuit function. Axons in the central nervous system are myelinated by oligodendrocytes whereas axons in

the peripheral nervous system are myelinated by Schwann cells. Myelination is enhanced after motor learning and the newly formed myelin is necessary for learning.

Furthermore, newly formed myelin is implicated in increased coupling between cortical spindle oscillations and hippocampal sharp wave ripples that affect memory

formation. Enhanced neuronal activity after chemogenetic or optogenetic stimulation results in increased myelin formation and thicker myelin sheaths.

and modulating oscillations have been found to be frequently
myelinated (Stedehouder et al., 2017) further indicating that
myelination might be important for brain oscillations and
synchronicity.

3. FUNCTIONAL ORGANIZATION OF
VESTIBULAR REFLEX CIRCUITS AND
THEIR MYELINATED TRACTS

The vestibular system serves a vital purpose: to stabilize posture
and gaze in response to destabilizing forces. To do so, it produces
corrective behaviors in response to body/head motion (Goldberg
et al., 2012). Functional simplicity and well-characterized
anatomy have made vestibular reflexes exceptional models
for understanding basic principles of neural circuit function.
Vestibular reflexes fall into two primary categories: vestibulo-
ocular reflexes stabilize gaze, and vestibulospinal/vestibulocolic
reflexes stabilize posture. The critical neural circuit underlying
each reflex consists of three classes of neuron: (1) vestibular
ganglion neurons that relay transduced forces to (2) central
brainstem neurons that in turn relay commands to (3)
motor neurons that produce compensatory muscle contractions.
Connecting these three classes of neuron are axon tracts. The
majority of axons that comprise vertebrate vestibular tracts are
myelinated (Scherer and Easter, 1984; Fermin and Igarashi,
1987; Fraher, 1989a; Berardinelli et al., 2000). Intriguingly, tracts
transmitting vestibular information are some of the first to
be myelinated in mammals during development (Langworthy,
1932) and the occurrence of myelin maybe correlated with the
development of specific abilities (Langworthy, 1928, 1932; Keene
and Hewer, 1931).

Here we detail the organization of vestibular circuits
(Figure 2), with particular focus on myelination.

Instability is transduced into neural activity by hair cells
located in two types of sense organs located in the inner
ear. First, the otolithic organs—the utricle and saccule—sense
linear accelerations (e.g., head tilts or body translations) in
the horizontal and vertical axes, respectively. Second, three
semicircular canals detect angular acceleration (e.g., head/body
rotations) in the pitch, yaw and roll axes. Neurons in the
vestibular ganglion are bipolar, with both a peripheral and central
projection. The peripheral projection extends from the somata to
synapse on the hair cells on each of the vestibular end organs.
The centrally-projecting axons comprise branches of the VIIIth
cranial nerve, entering the brainstem at the level of the lateral
vestibular nucleus and terminating in the vestibular nuclei and
the cerebellum (Büttnrt-Ennever, 1992). Finally central vestibular
efferent neurons send projections from the brainstem to the
periphery as part of the VIIIth nerve, where they are thought to
impact sensation (Mathews et al., 2017; Raghu et al., 2019).

In mammals, most axons in the VIIIth nerve are myelinated,
and the somata of vestibular ganglion neurons are myelinated
as well (Fermin and Igarashi, 1987). Like many cranial nerves,
there is a bimodal distribution of fiber diameter in the VIIIth
nerve that emerges during development, suggesting that neurons
are myelinated at different times (Bronson et al., 1978; Kerns,
1980; Hahn et al., 1987; Fraher, 1989a,b; Bardosi et al., 1990;
Berardinelli et al., 2000). Larger axons are myelinated first
followed by thinner ones during later stages of development.
While peripheral branches of the vestibular nerve innervate
different sensory structures, their fiber diameters, numbers, and
myelination are comparable (Landolt et al., 1973). In contrast,
vestibular efferents are thin with predominantly unmyelinated
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FIGURE 2 | Two vestibular circuits in the larval zebrafish responsible for stabilization of gaze and posture. (Left) The vestibulo-ocular reflex circuit is responsible for

stabilizing gaze. Illustrated in color are the primary populations responsible for the vertical and torsional directions of rotation. Nose-up/eyes-down are illustrated in

yellow, and nose-down/eyes-up are illustrated in blue. Both channels sense instability with hair cells in the inner ear tuned to a particular direction of linear acceleration.

These hair cells relay information to VIIIth nerve vestibular afferent neurons located in the vestibular ganglion, and then in turn to neurons in the vestibular nuclei.

Individual vestibular nucleus neurons sent ascending projections along the medial longitudinal fasciculus (MLF) to either cranial nucleus III alone (blue) or cranial nucleus

III and IV (yellow) where motor neuron somata send axons to their respective eye muscles. (Right) The vestibulospinal circuit has similar peripheral input, but instead of

ascending projections from vestibular nucleus neurons leverages descending projections that also run along the medial longitudinal fasciculus. These neurons (green

and pink) comprise the lateral and medial vestibulospinal tracts and project to spinal interneurons and motor neurons which in turn control trunk musculature.

axons (Raghu et al., 2019). Finally, the vestibular nerve also
contains some unmyelinated fibers in close contact with blood
vessels thought to have vasomotor function (Rasmussen, 1940).
Post-mortem studies revealed that the vestibular nerve in
humans is already heavily myelinated at birth (Bergström, 1973).
There is a slight loss of myelinated fibers during aging, which
is most apparent in the late 70s (Rasmussen, 1940; Bergström,
1973).

Myelin development in the VIIIth nerve proceeds along a
peripheral to central gradient, with implications for functional
development. In mice, at the 15th and 16th gestational day
Schwann cells start to enclose vestibular nerve axons. By
postnatal day 4 the peripheral part of the vestibular nerve
is myelinated whereas the central part shows less signs of
myelination. By postnatal day 10 the amount of myelination
of the peripheral part has reached adult values (Anniko, 1985).

Vestibular ganglion somata are also myelinated, however this
occurs later, around 7–21 days postnatally (Dechesne et al.,
1987). During this post-natal period, responses of vestibular
neurons mature (Desmadryl, 1991). The gradient in myelination
in vestibular ganglion neurons is reminiscent of findings in
the cochlear branch of the VIIIth nerve in humans. There, the
central projection is myelinated 2–3 weeks after the peripheral
projection, with concomitant functional maturation (Moore and
Linthicum, 2001).

Central axons of vestibular ganglion neurons project as part
of the VIIIth nerve to the brainstem and cerebellum. Vestibular
brainstem nuclei are named for their relative locations in the
hindbrain: medial, lateral, superior, and inferior; anamniotes
and birds have a fifth, called the tangential nucleus. Projections
from these vestibular nuclei that subserve reflexive behavior
can be categorized with respect to their target motor pools.
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The vestibulo-ocular reflex relies on three cranial motor nuclei:
the oculomotor (nIII), the trochlear (nIV), and the abducens
(nVI) that collectively stabilize gaze in the pitch, roll, and yaw
axes (Dickman, 2018). The vestibulospinal/vestibulocolic reflexes
maintain muscle tone and produce corrective movements
through alpha/gammamotor neurons of the spinal cord (Wilson,
1995; Goldberg and Cullen, 2011).

Brainstem vestibular axons project along three major
tracts: the medial longitudinal fasciculus (MLF), the lateral
vestibulospinal tract (LVST), and medial vestibulospinal tract
(MVST). The MLF contains ascending and descending fibers.
The ascending fibers connect the vestibular nuclei to cranial
motor nuclei (Watson, 2012). Ascending neurons with ipsilateral
axons tend to release inhibitory neurotransmitters, while those
that cross the midline are predominantly excitatory. The MVST
runs within the MLF and innervates motor neurons of the
neck muscles of the ipsilateral and contralateral cervical spinal
cord (Kasumacic et al., 2010; Rea, 2015; Lambert et al., 2016).
The lateral vestibulospinal tract (LVST) innervates alpha and
gamma motor neurons at all levels of the ipsilateral spinal
cord and interneurons in laminae VII–IX (Kasumacic et al.,
2015; Dickman, 2018). Notably, forelimb motor neurons receive
only LVST input (Lambert et al., 2016). Neurons in the LVST
are excitatory whereas neurons from the MVST can be either
excitatory or inhibitory (Dickman, 2018).

In rats, the MLF has only a small amount of myelin at birth
but this increases rapidly and at 21 days the myelination is
comparable to adult levels (Hamano et al., 1998). In humans the
MLF is one of the earliest central tracts where myelin staining
appears; it is visible around the 14th week of gestation (Keene
and Hewer, 1931), reaching adult levels at 34 weeks of gestation.
This earlymyelination is proposed to be important for the earliest
vestibular reflexes of the head, neck and upper extremities (Gilles,
1976; Tanaka et al., 1995).

The final target of the vestibulo-ocular reflex, the extraocular
muscles, are innervated by three cranial nerves. The oculomotor
nerve (cranial nerve III) innervates the medial, superior and
inferior rectus and the inferior oblique muscle. The trochlear
nerve (cranial nerve IV) innervates the superior oblique muscle,
and the abducens nerve (cranial nerve VI) the lateral rectus
muscle (Purves, 2004). The majority (80–90%, depending on the
species) of axons in these nerves are myelinated (Scherer and
Easter, 1984; Fraher, 1989a; Berardinelli et al., 2000). In sheep,
the remaining unmyelinated fibers are enveloped by Schwann
cells, and may play a sensory role (Berardinelli et al., 2000).
Analysis of the timeline of myelination of the VIth cranial nerve
in rats showed that there is a rapid increase in myelinated fibers
in the first postnatal week. In the following week myelination
seems to halt, whereas in the third postnatal week the number of
myelinated fibers increase again as thin axons becomemyelinated
(Hahn et al., 1987). A similar progression has been described for
the trochlear nerve in rats (Kerns, 1980).

Extraocular muscles contain both fast- and slow-twitch fibers
innervated by similarly specialized motor neuron axons. Axon
diameter is bimodally-distributed within the ocular motor nerves
(Bronson et al., 1978; Fraher, 1989a,b; Bardosi et al., 1990;
Berardinelli et al., 2000). Small diameter axons innervate the slow

muscle fibers, whereas the large diameter axons innervate the fast
muscle fibers of the extra ocular muscles (Dietert, 1965; Browne,
1976). Myelin thickness generally correlates with axon diameter.
However, in human abducens nerve, [narrow/wide] axons are
found with both thick and thin myelin. There, as in the vestibular
periphery, the difference in myelin thickness is thought to reflect
differential onset of myelination (Bardosi et al., 1990).

The cerebellum plays a key role in modulating vestibular
reflexes (Lance, 1981). Inputs to the cerebellum arise directly
from the vestibular afferents (Balmer and Trussell, 2019),
and Purkinje axons pass through the juxtarestiform body and
connect the vestibular nuclei with the cerebellum (Dickman,
2018). In mice fibers of the juxtarestiform body show faint
myelin staining in the newborn which increases gradually and
are heavily myelinated by end of the second postnatal week
(Bernstein, 1957). The vestibular lobes, flocculonodular lobe
and parafloccular lobe, of the cerebellum show myelin staining
toward the end of the 2nd postnatal week while the other lobes
of the cerebellum already show myelin staining at the beginning
of the second postnatal week (Bernstein, 1957). In humans,
myelination starts around 16 weeks gestation and the cerebellar
tract is heavily myelinated at birth (Keene and Hewer, 1931).

Vestibular reflex circuits are a powerful model for
understanding neural development and function due to their
well-defined anatomy. Further, we have a broad understanding
of the timeline of myelination, particularly as it relates to the
onset of function. While particular timelines may vary between
different species, they are broadly correlated with reflex capacity
at birth (Langworthy, 1932). Consequentially, vestibular reflex
circuits are well suited to assess the functional consequences
of myelination during development and demyelination
during disease.

4. DEMYELINATING DISEASES AND THEIR
EFFECTS ON BALANCE

Multiple Sclerosis (MS) is a demyelinating autoimmune disease
with a broad range of symptoms including vision problems,
weakness in arms or legs or imbalance (Matsuda et al., 2011).
MS patients commonly suffer dizziness and vertigo, negatively
impacting quality of life (Marrie et al., 2013) and increasing
the risk of falls and injuries (Peterson et al., 2008; Matsuda
et al., 2011). Balance performance correlates with the damage
to white matter tracts (Prosperini et al., 2013) as well as with
central lesion size (Doty et al., 2018). Impaired spinal axon
conduction is thought to underlie balance impairment (Cameron
et al., 2008). Physical therapy focused on improving vestibular
reflexes allows better management of dizziness and vertigo in MS
patients (García-Muñoz et al., 2020), suggesting a role for activity
dependent remyelination (Bacmeister et al., 2020). MS lesions
present as white matter hyperintensities in MRI. Functional
assays of vestibular reflex capacity can serve as a powerful
diagnostic tool: some MS patients with balance problems have
alterations in vestibular evoked myogenic potentials even in the
absence of detectable white matter hyperintensities (Stadio et al.,
2019).
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MS patients present with characteristic impairments to
vestibulo-ocular reflexes. Internuclear ophthalmoparesis is the
most common disorder in MS affecting eye movements. It has
two hallmarks: a slowing of the adducting eye (adduction lag)
during horizontal eye movements and an impaired vestibulo-
ocular reflex, primarily the vertical vestibulo-ocular reflex.
Demyelination of the abducens internuclear neurons causes
horizontal adduction lag, whereas demyelination of the vestibular
nuclei projections causes impairments of vertical vestibulo-
ocular reflex (Leigh and Zee, 2015; Serra et al., 2018). Finally,
many patients with MS develop a pendular nystagmus, an
oscillating eye movement that often causes blurred vision (Leigh
and Zee, 2015).

In addition to MS, other demyelinating disorders can also
present with characteristic impairment to vestibular reflexes.
For example, Pelizeaus Merzbacher disease is a rare X-linked
developmental disorder associated with abnormal myelination of
the brain and spinal cord. Children with Pelizaeus Merzbacher
disease show abnormal eye movements, often developing a
pendular nystagmus, with varying amplitudes and frequencies
among patients. Smooth pursuit and the optokinetic nystagmus
are also often defective in these patients. It is thought that these
abnormal eye movements are caused by defects of cerebellar
processing (Huygen et al., 1992; Leigh and Zee, 2015).

5. ZEBRAFISH AS A MODEL ORGANISM
TO STUDY MYELINATION IN THE
VESTIBULAR SYSTEM

Among vertebrates one model is especially well-suited to study
myelin in the context of neural circuits: the larval zebrafish.
Zebrafish develop externally, and are transparent as larvae.
Zebrafish are genetically accessible, allowing molecular control of
defined populations of cells. Consequentially, in vivo longitudinal
imaging studies are routine. Crucially, the molecular and cellular
mechanisms involved in myelination are conserved between
zebrafish and mammals (Preston and Macklin, 2014; Ackerman
and Monk, 2016). Findings in zebrafish and mice routinely
complement one another; for example, neuronal activity is an
important driver for myelination in both the zebrafish andmouse
central nervous system (Gibson et al., 2014; Hines et al., 2015;
Mensch et al., 2015). Zebrafish can therefore illuminate the role
of myelin in vertebrate neural circuits.

The genetic tractability of the zebrafish preparation facilitates
a focus on myelin in the vestibular system. A considerable library
of validated tools now exist to label and track oligodendrocytes,
Schwann cells or oligodendrocyte precursor cells (Almeida et al.,
2011; Czopka et al., 2013; Hines et al., 2015; Mensch et al.,
2015; Auer et al., 2018; Marisca et al., 2020). Further, there are
many tools to target oligodendrocytes with both coarse (Chung
et al., 2013; Neely et al., 2022) and precise (Auer et al., 2018)
optical manipulations. Myelination can be accelerated or delayed
by using pharmacological approaches (Early et al., 2018), and
candidate genes can be targeted for loss-of-function experiments
(Hruscha and Schmid, 2014; Irion et al., 2014).

In addition, reagents exist to target populations of cells
responsible for vestibular reflexes (Bianco et al., 2012; Schoppik
et al., 2017; Ehrlich and Schoppik, 2019; Liu et al., 2020; Hamling
et al., 2021; Wu et al., 2021) Consequentially, considerable
strides have been made in studying the function of neurons
responsible for the vestibulo-ocular reflex (Bianco et al., 2012;
Schoppik et al., 2017), and vestibulo-spinal postural reflexes
(Bagnall and McLean, 2014; Ehrlich and Schoppik, 2017, 2019;
Liu et al., 2020, 2021; Hamling et al., 2021; Wu et al., 2021).
Here, just as in many other animal models of vestibular function,
the ability to parametrically present vestibular stimuli (i.e.,
tilts/translations) permits rigorous quantitative assessment of
neuronal function. Further, whole-brain imaging allows for
simultaneous measurements of neural activity during vestibular
stimulation (Favre-Bulle et al., 2018; Migault et al., 2018). Taken
together, the zebrafish vestibular circuits allow an exceptional
view into the role of myelination in vestibular circuit function
and attendant behaviors.

Here we schematized different manipulations to myelin
and methods to perform behavioral or functional assessment
(Figure 3).

6. OPEN QUESTIONS AND CONCLUSIONS

Recent work supports the idea that newly formed myelin is
important for proper neuronal circuit function and learning.
Activation of axons leads to enhanced myelination or thicker
myelin (Gibson et al., 2014; Mensch et al., 2015; Koudelka et al.,
2016; Mitew et al., 2018) and the formation of new myelin
seems crucial for new memory formation and consolidation
(McKenzie et al., 2014; Xiao et al., 2016; Bacmeister et al.,
2020; Pan et al., 2020; Steadman et al., 2020). Complementary,
during development myelin formation allows neuronal circuits
to mature. The mechanisms by which such newly formed
myelin affects circuits in either development or learning are
not yet understood. Here we propose that the vestibular
system of the larval zebrafish will facilitate progress on three
fundamental questions.

First: What role does myelin play during normal development
of behavior? In both mice (McKenzie et al., 2014; Xiao et al.,
2016; Bacmeister et al., 2020; Pan et al., 2020; Steadman et al.,
2020) and humans (Bengtsson et al., 2005; Scholz et al., 2009;
Hu et al., 2010) formation of new myelin is necessary for
acquiring new skills. We hypothesize that similar mechanisms
are at play during development, when many new skills are
learned and improved. To date, correlations between behavioral
improvements and development have primarily been inferred
from post-mortem studies (Langworthy, 1928, 1932). Progress
will require a system that permits longitudinal measurements
of myelin progression in vivo such as the larval zebrafish
(Almeida et al., 2011; Czopka et al., 2013; Hines et al., 2015;
Mensch et al., 2015; Auer et al., 2018; Marisca et al., 2020).
Similarly, both gaze-stabilizing and posture-stabilizing vestibular
behaviors develop over time in the larval zebrafish (Bianco
et al., 2012; Ehrlich and Schoppik, 2017, 2019; Schoppik
et al., 2017; Hamling et al., 2021). Thus, the larval zebrafish
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FIGURE 3 | Zebrafish larvae are well suited to assess behavior and neuronal circuit function after myelin manipulations. (A) Schematics of possible manipulations that

can be performed using zebrafish as a model system. (i) 2 Photon laser ablation can be used to selectively demyelinate and create focal myelin lesions. (ii) The

development of myelination can be accelerated or delayed using pharmacological treatments. (iii) Optogenetic methods can be used to probe circuit function. (B)

Schematics of methods used to assess vestibular behavior and circuit function. (i) Posture and swimming kinematics can be analyzed. (ii) Vestibulo-ocular reflex can

be tested and compensatory eye movements analyzed. (iii) Calcium imaging can be used to measure neural activity to assess circuit function.

is poised to permit direct longitudinal examination of the
relationship between myelination and functional improvements.
Crucially, libraries of reagents exist that can slow down or
accelerate myelination in zebrafish (Early et al., 2018). We
therefore propose that measuring and manipulating myelination
in vestibular circuits of larval zebrafish while measuring postural
development will allow profound insights into myelin’s role
during maturation.

Next: What role does metabolic support play for neural
circuit function during development? Beyond its classical roles
in enhancing conduction velocity and saving energy (Sokoloff
et al., 1977), myelin benefits ensheathed neurons by actively
providing metabolic support (Fünfschilling et al., 2012; Lee
et al., 2012; Beirowski et al., 2014). Loss of this metabolic
support affects auditory processing in mice (Moore et al., 2020).
We hypothesize that such metabolic support will prove crucial
for normal functional development of neuronal circuits. As
described above, the zebrafish vestibular system is comprised
of an especially accessible set of simple neuronal circuits.
Crucially circuit function can be assessed following specific

blockade of metabolic support, allowing powerful loss-of-
function experiments. Furthermore, the sensitivity of central
vestibular neurons is straightforward to assess with either optical
imaging (Favre-Bulle et al., 2018; Migault et al., 2018) or
electrophysiology (Liu et al., 2020; Hamling et al., 2021). These
approaches will leverage the accessibility of the larval zebrafish
vestibular system to understand how loss of glial metabolic
support affects the integrity of developing neuronal circuits.

Finally: How do demyelination and remyelination affect
vestibular circuit function? Demyelinating disorders are
associated with characteristic deficits in vestibular reflexes (Leigh
and Zee, 2015; Serra et al., 2018). However, demyelination is
associated with inflammation and neurodegeneration making it
hard to disentangle the particular consequences of demyelination
from inflammatory effects. Understanding the specific behavioral
consequences of demyelination is key to improve diagnosis and
target therapies. Clinically, remyelination of MS lesions is often
incomplete resulting in thinner and shorter myelin sheaths. The
amount of remyelination also greatly varies between different
patients and does not correlate with the disease course (i.e.,
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relapsing remitting or progressive) (Patrikios et al., 2006).
We therefore need a means to assess how demyelination and
successful remyelination might affect circuit function. Focal
demyelination is possible in zebrafish (Auer et al., 2018), and
zebrafish can regenerate normal thickness myelin (Karttunen
et al., 2017). If such assays were performed in vestibular
circuits, it would be straightforward to assess both behavior and
conduction velocity following myelin injury and recovery. We
anticipate that such experiments would allow powerful insight
into the mechanisms by which myelin loss and restoration can
impact circuit function.

In summary, as myelin’s role in neuronal circuit development
expands, so too does the need for powerful models to test
mechanistic hypotheses. One such resource—the larval zebrafish
vestibular system—balances accessibility and sensitivity in an
evolutionarily conserved context. There, one can leverage the
zebrafish’s cutting-edge genetic and optical technologies with the
careful and quantitativemeasurements andmodels of behavior so
familiar to vestibular neuroscientists. We are optimistic that this
synergy will allowmeaningful progress toward understanding the
functional impact of myelination during normal development.
We conclude with the hope that such a tool will ultimately
prove its worth by informing ameliorative approaches to
demyelinating disease.
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