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ABSTRACT

Balance and movement are impaired in a wide variety of neurological disorders. Recent advances in behavioral monitoring
provide unprecedented access to posture and locomotor kinematics, but without the throughput and scalability necessary to
screen candidategenes / potential therapeutics. Wepresent a powerful solution: a ScalableApparatus toMeasurePosture and
Locomotion (SAMPL). SAMPL includes extensible imaging hardware and low-cost open-source acquisition software with real-
time processing. We first demonstrate that SAMPL’s hardware and acquisition software can acquire data from three species
(flies, worms, and zebrafish) as they move vertically. Next, we leverage SAMPL’s throughput to rapidly (two weeks) gather a
new zebrafish dataset. We use SAMPL’s analysis and visualization tools to replicate and extend our current understanding of
how zebrafish balance as they navigate through a vertical environment. Next, we discover (1) that key kinematic parameters
vary systematically with genetic background, and (2) that such background variation is small relative to the changes that
accompany early development. Finally, we simulate SAMPL’s ability to resolve differences in posture or vertical navigation as
a function of effect size and data gathered – key data for screens. Taken together, our apparatus, data, and analysis provide a
powerful solution for labs using small animals to investigate balance and locomotor disorders at scale. More broadly, SAMPL
is both an adaptable resource for labs looking process videographic measures of behavior in real-time, and an exemplar of
how to scale hardware to enable the throughput necessary for screening.

INTRODUCTION
Measuring posture and locomotion is key to understand nervous
system function and evaluate potential treatments for disease
– particularly neurological disorders1 . Behavioral screening is a
fundamental part of both basic and translational approaches to
disease2,3 . For screens, measuring behavior from large numbers
of animals is necessary to differentiate individual variation4 from
changes seen in disease models and/or improvement following
treatment5,6 . The demand for such high-throughput measure-
ments comes at a cost: often, measurements that require high
resolution – such as posture – are limited. Modern machine
learning algorithms and inexpensive videographic / computing
hardware have automated measurements of posture and kine-
matics7–9 and illuminated our understanding of animal behav-
ior10–12 . We sought to combine videographic analysis of posture
and vertical locomotion with the scalability amenable to screen-
ing.
Over the past decade, we’ve studied posture and locomotion us-
ing the larval zebrafish as a model. Neural architecture is highly
conserved across vertebrates, making larval zebrafish an excel-
lent model to understand the underpinnings of locomotion13,14

and balance15 . For our studies, we developed a new appara-
tus/analysis pipeline to measure the statistics of posture in the
pitch (nose-up/nose-down) axis and locomotion as larvae swam
freely in depth. We discovered that larvae learn to time their
movements to facilitate balance16 , that larvae modulate the
kinematics of swimming to correct posture17 , and that larvae en-
gage their pectoral fins to climb efficiently18 , and implicated dif-
ferent neuronal circuits in eachof thesebehaviors. While informa-
tive, data collection was slow (months) on small numbers (<5) of
apparatus. Increasing throughput remains a challenge common
to labs that develop new tools to measure behavior.
To meet the needs of scalability, resolution, and extensibility we
developed SAMPL: a low-cost, open-source solution that mea-
sures posture and vertical locomotion in real-time in small ani-
mals. Further, we provide a turn-key analysis pipeline to measure
larval zebrafish balance behavior. Webeginwith a brief treatment
of the hardware and software; a detailed design guide, assembly
and operating instructions are included as supplemental appen-

dices. Next, we use SAMPL to measure unconstrained vertical lo-
comotion in two common invertebrate models: flies (Drosophila
melanogaster), and worms (Caenorhabditis elegans), as well as
a small model vertebrate, the larval zebrafish (Danio rerio). To il-
lustrate SAMPL’s capabilities, we parameterize a new dataset fo-
cused on behaviors that larval zebrafish perform as they stabi-
lize posture and navigate (i.e. climb/dive) in the water column.
Our new dataset represents two weeks worth of data collection,
and allowedus to detail variation in postural/locomotor behaviors.
Bymeasuring behavior across different genetic backgrounds and
development, we report two new findings. First, variation in pos-
ture/locomotion is systematic across genotype and second, the
scale of variation in behavior across development is much larger
than background genetic variation. We use these new data to
simulate the resolving power for each behavioral parameter as
a function of data gathered – foundational information to rig-
orously assay the effects of candidate genes or small molecules
on posture or locomotion. SAMPL thus offers a straightforward
way to gather data from small animals, and a turn-key solution
to screen for balance and vertical locomotion in larval zebrafish.
More broadly, SAMPL offers a template for labs looking to scale
their own behavioral apparatus to achieve the throughput nec-
essary for screens. SAMPL will thus facilitate reproducible studies
of postural and locomotor behaviors in both health and disease,
addressing unmet needs in treating neurological disorders, par-
ticularly with balance symptoms19 .

RESULTS

SAMPL hardware & software overview
To overcome measure posture with the throughput necessary
for genetic and drug screens, we deployed SAMPL, a real-time
videographic system (Figure 1A) that records small animal be-
havior in the vertical axis. Below we briefly describe the hardware
and software that comprise SAMPL. SAMPL’s hardware consists of
three simple modules: an infrared (IR) illumination module (Fig-
ure 1B), a camera-lens module (Figure 1C), and two clamps to
hold fish chambers (Figure 1D). All three modules are mounted
directly (Figure 1A) onto an aluminum breadboard (Figure S1)
and a light-tight enclosure covers the entire apparatus to permit
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individual control of lighting (Figures 1F and 1G). Details of hard-
ware and software design can be found in Appendices 1&2. A
complete parts list is in Table 1, hardware assembly instructions
in Appendix 3, and a stop-motionmovie of assembly provided as
Movie 1.
The IR module illuminates the arena from behind. It is optimized
to fulfill four criteria: (1) high image quality; (2) a large area for
imaging; (3) imperceptible illumination; (4) ample heat dissipa-
tion. We used a 940 nm “star” style LED as our source of IR illu-
mination and developed a simple illumination module to diffuse
IR light across a 50mm circle (Figure 1B). For heatmanagement,
eachLEDwasmounted toa small heat sink (Figure1B). This setup
allows us to power three illumination modules in series using a
single LED driver.
The second module captures videographic data. It consists of a
camera and lens optimized for speed, resolution, compactness,
and affordability. The camera sensor satisfies the following de-
mands: (1) large pixel size with low noise allowing for high dy-
namic range / signal-to-noise ratio; (2) interfaces supporting large
enough bandwidth for data transfer; (3) camera availability. The
lens achieves (1) close focus; (2) sufficient depth-of-field to cover
the entire depth of the imaging arena; (3) high image quality;
(4) compact size; (5) high IR transmission rate; (6) ease of inte-
grating an IR-pass filter. We adapted a 50mm IR-optimized lens
by placing a 0.3" extension tube between the lens and the cam-
era to achieve higher magnification ratio with minimum work-
ing distance. The space between camera adapters and the ex-
tension tube allows us to fit a 25 mm IR-pass filter; the exten-
sion tube gives amount point to connect themodule to the base
(Figure 1A). Using this camera-lens module, we image an area
~400mm2 (Figure 1E, pink square) at 166 Hz with 1200×1216
pixels at a focal distance of ~24 cm.
The final module is a rectangular arena optimized for vertical lo-
comotion (i.e. parallel to the focal plane). By design, the imag-
ing area is smaller than the chamber size, allowing stochastic
sampling of behavior and avoiding edge effects. We assembled
custom-fabricated chambers from laser-cut acrylic by cementing
transparent front and back sides to a U-shaped piece that forms
the narrower sides (Figure 1E). We designed two types of cham-
bers with different inner widths to adapt to the needs of differ-
ent experiments: a wider standard chamber optimized for larger
groups of animals and a narrower chamber for 1-3 animals (Fig-
ure 1E). Chambers can be easily dropped into the holders (Fig-
ure 1D) from the top of the behavior box and secured in place for
recording.
SAMPL includes a complete suite of open-source software for
acquisition/real-time extraction of data (source and compiled ex-
ecutables provided). Acquisition consists of a graphical user inter-
face, written in LabView that analyzes video in real-time to isolate
an animal’s location and orientation, with the ability to save raw
video for further off-line analysis. The real-time processing algo-
rithmconsists of: (1) background subtraction; (2) noise threshold-
ing; (3) rejection of frames without an animal or with >1 animal in
view; (4) size and intensity criteria to identify the animal and the
head; (5) image processing to extract location and body orienta-
tion relative to the horizon. Data about location and orientation is
saved to a text file, metadata about the experiment is saved to a
separate text file, and optionally, video is saved as an AVI file.
SAMPL’s modules and software were designed to scale, minimiz-
ing footprint and experimenter time. We multiplex apparatus,
providing three distinct compiled applications designed to run si-
multaneously on one computer to reduce cost/footprint. A set of
three SAMPL apparatus and a computer case fit on one 24"x36"
shelf (Figure 1H). One SAMPL “rack” consists of four such shelves
(81.5" high) and costs ~$40,000-$45,000 (December 2022, be-
fore volume discounts). In our labs, trained experimenters can
load such a rack for a typical 48hr experiment in 30 minutes.
Taken together, SAMPL’s design is ideal to efficiently gather data
describing posture and vertical locomotion.

SAMPL validation: different small animals
SAMPL iswell-suited to collect data fromawide rangeof small an-
imals. We demonstrate the flexibility of SAMPL’s acquisition suite

using three common model organisms. By changing SAMPL’s
thresholds (Table 2), we could acquire data from three differ-
ent organisms: Drosophilamelanogaster climbingbehavior (Fig-
ures 2A and 2B), continuous locomotion in Caenorhabditis el-
egans (Figures 2C and 2D), and swimming in Danio rerio (Fig-
ures 2E and 2F). We present raw video from the epochs in
Figure 2 together with plots of real-time image processing (fly
& worms, Movie 2; fish, Movie 3). These results demonstrate
SAMPL’s excellent flexibility and robustness in real-time record-
ing and analysis of vertical locomotion of small animals.

SAMPL validation: measuring postural and locomotor kine-
matics in real-time
Next, to demonstrate how SAMPL facilitates efficient collection of
high-quality kinematic data, we gathered a new dataset from lar-
val zebrafish (7-9 days post-fertilization, dpf) that swam freely in
the dark. A typical experiment consisted of two sequential 24-
hour sessions using our SAMPL fleet. Data were pooled across
apparatus for subsequent analysis of kinematics. Each 24-hour
behavior session yielded on average 1223±481 bouts per day for
the standard chamber (6-8 fish) and 1251±518 bouts per day
for the narrow chamber (2-3 fish). While not analyzed, running a
single fish in the narrow chamber yielded 891±903 bouts over
24hrs. Based on the number of apparatus used, we estimate that
a similar dataset (total n=121,979 bouts) could be collected in
two weeks using a single SAMPL rack.
We first used our data to establish basic distributions of locomo-
tion and posture. We used SAMPL’s processing algorithm to ex-
tract the following information in real-time: (1) pitch, defined as
the angle between the long axis of the fish’s body and the hori-
zon (Figure 2E); (2) x (azimuth), z (elevation) coordinates of the
center of the pixels that correspond to the fish. After collection,
we used SAMPL’s processing suite to extract basic postural kine-
matics during swimming. Zebrafish larvae swim in discrete pe-
riods of translation called “swim bouts” (Figure 2F)16,20 . We de-
fined swim bouts as periods where the instantaneous speed ex-
ceeds 5 mm/sec (Figure 2F, dashed line). The time of the peak
speed was defined as t = 0ms (Figure 2F, cyan lines). Swim bouts
were aligned to peak speed for extraction of kinematic param-
eters; the period 250 ms before and 200 ms after peak speed
was reserved for future analysis. We observed that zebrafish lar-
vae swim predominantly at slower speeds with mean and stan-
darddeviationmeasured12.90±4.91mm/s, onparwithprevious
reports16,20–22 . Larvae showed a broad distribution of postures
evaluated at peak speed (8.48°±15.23°) with a positive (nose-up)
average, suggesting that SAMPL detected a variation of nose-up
and nose-down swim bouts. SAMPL can thus rapidly acquire a
richdataset of spontaneous locomotor behavior and awide range
of “natural” postures.

SAMPL validation: extracting key parameters of balance and
vertical navigation in zebrafish
SAMPL includes data analysis and visualization code (Python
source and sample datasets provided) optimized to extract key
parameters of balance and locomotion from larval zebrafish. We
use our “two-week” dataset to demonstrate that SAMPL can re-
solve these four parameters:
Figure 3: Control of movement timing.16
Figure 4: Control of steering to climb/dive.17
Figure 5: Coordination between trunk and fin.18
Figure 6: Control of posture stabilizing rotations.17
We conclude that SAMPL’s resolution and throughput allows
rapid and deep insight into each parameter, detailed below. Data
analysis using theprovided scripts on theprovideddataset runs in
30 minutes on a typical analysis computer (M1 processor, 16GB
RAM). Full details of analysis/visualization is provided in Appendix
4, and a step-by-step guide to set up the relevant environment
and to run experiments provided in Appendix 5.
Proper balance requires active stabilization. Zebrafish larvae are
front-heavy and therefore subject to destabilizing torques in the
pitch (nose-up/nose-down) axis. Swim bouts counteract the re-
sultant forces, stabilizing the fish. Zebrafish larvae learn to initiate
swim bouts when unstable16 . We first defined movement rate
as the reciprocal of the inter-bout interval (Figures 3A and 3B).



More extreme postures were associated with higher movement
rate (Figure 3C), with a parabolic relationship (Figure 3C, R2 =
0.14). We expect that themajority of the residual variance reflects
a previously-reported dependence of movement timing on an-
gular velocity16 . The three coefficients of the parabola represent
the preferred posture, the basal rate of movement, and – key to
our analysis – the degree to which postural eccentricity relates to
movement rate, or “sensitivity,” (Figure 3D). SAMPL therefore per-
mits efficient quantification of a crucial posture-stabilizingbehav-
ior: the relationship between perceived instability and corrective
behavior.
Like most animals, larval zebrafish go where their head points. To
adjust their vertical trajectory (i.e. to climb or dive) larvaemust ro-
tate their bodies away from their initial posture, pointing in the
direction they will travel (Figures 4A and 4B). Previous work17 es-
tablished that this rotation occurs during a swim bout, before the
peak speed (Figure 4C). A larva’s steering ability reflects the rela-
tionship between the change in posture before the peak speed
and the resultant deviation in trajectory (Figure 4D). We param-
eterized steering as the slope (gain) of the best-fit line between
posture and trajectory evaluated at the time of peak speed (Fig-
ure 4E). A gain of 1 indicates that the observed trajectory could
be explained entirely by the posture at the time of peak speed
(Figure 4F). SAMPL revealed that 7 dpf larvae exhibit an average
steering gain at 0.67, suggesting an offset between posture and
trajectory at the time of peak speed (Figure 4E, R2 = 0.92). SAMPL
allows us to infer how effectively larvae steer using axial (trunk)
musculature to navigate the water column.
To climb (Figures 5A and 5B) fish generate lift with their pec-
toral fins, assisting steering rotations and subsequent axial undu-
lation23,24 . Larval zebrafish learn to climb efficiently by coordinat-
ing their trunk and fins18 . We defined the attack angle, or the ad-
ditional lift associated with each climb, as the difference between
the steering-related changes and the resulting trajectory (Fig-
ure 5C). We evaluated attack angle after pectoral fin loss, reveal-
ing a clear contribution to climbs (Figure 5D). Next, we demon-
strate a positive correlation (with rectification and asymptote) be-
tween steering-related rotations and fin-based attack angle (Fig-
ure 5E, left). Notably, after peak angular velocity, rotations are
poorly correlated with attack angles (r = -0.17) (Figure 5E, right).
These residuals reflect the initial angular decelerationas fish reach
their peak speed (Figure 5A). We parameterize the relationship
between the initial rotation and the attack angle using logistic
regression (Figure 5F, R2 = 0.31). The regression reveals themax-
imal slope of the sigmoid relating steering and lift (Figure 5G).We
use this slope as a single measure of coordination between axial
and appendicular muscles, i.e. between trunk (steering) and fins
(lift). SAMPL thus permits efficient inference of coordinated be-
havior.
Larvaemust activelymaintain their preferred posture in the pitch
axis. To do so, they rotate partially towards their preferred orien-
tation as they decelerate (Figures 6A to 6C). The magnitude of
these rotations scales with the eccentricity of their posture before
a swim bout17 . We estimated the slope (-0.17) of the line that re-
lated initial posture and the amount the fish rotated back toward
the horizontal (Figure 6D), R2 = 0.56. As the behavior is correc-
tive, the relationship is negative; we therefore define the gain of
righting as the inverse of the slope (Figure 6E). We further define
the “set point” as the point where an initial posture would be ex-
pected to produce a righting rotation of zero (Figures 6E and 6F).
SAMPL facilitates quantification of corrective reflex abilities (gain)
and associated internal variables (set point).
Taken together, our estimates of key posture and locomotor pa-
rameters establish that SAMPL can rapidly generate datasets that
permit rich insight into the mechanisms of balance and vertical
navigation.

SAMPL can resolve slight variations in posture control strate-
gies across genetic backgrounds
To beuseful SAMPLmust resolve small but systematic differences
in keymeasures of posture and vertical locomotion. Even among
isogenic animals reared in controlled environments, genetic dif-
ferences contribute to behavioral variability25–32 . The “two-week”

dataset analyzed in Figures 3 to 6 included data from three dif-
ferent genetic backgrounds. Larvae for experiments were gener-
ated by repeatedly crossing the same clutch of wild-type adults
(mixed background) to zebrafish of three different strains: AB (n =
62457bouts, N = 225 fish over 10 experimental repeats); SAT (n =
27990 bouts, N = 117 fish over 7 experimental repeats); and the
lab wild type (n = 31532 bouts, N = 195 fish over 10 experimen-
tal repeats). To capture the full variance in the dataset, we took
a conservative approach by calculating kinematic parameters for
individual experimental repeats (n = 4518±1658 bouts). We as-
sayed SAMPL’s sensitivity by asking (1) if there were detectable
differences in the four parameters defined in Figures 3 to 6 and
(2) if these differences were systematic.
Qualitatively, larval zebrafish of the same age swim similarly; as
expected, the magnitude of change across strains we observed
in Figure 7 is quite small. Nonetheless SAMPL could resolve sys-
tematic variations in locomotion behavior and balance abilities
among larvae of different strains (Figure 7). AB larvae exhibited
the best posture stability, demonstrated by the lowest standard
deviation of IBI pitch compared to the other two strains (Fig-
ure 7C). Correspondingly, AB larvae had the highest bout fre-
quency (Figure 7B), sensitivity to posture changes (Figure 7E),
and righting gain (Figure 7K), all of which contributes positively
to their higher posture stability. These results demonstrate that
SAMPL is capable of detecting intra-strain variations in locomo-
tion and balance behavior.
In contrast, larvae of different ages adopt different strategies to
stabilize posture and navigate in depth16–18 To contextualize the
magnitude of strain-related differences we gathered a longitu-
dinal dataset by measuring behavior from the same siblings of
the AB genotype at three timepoints: 4-6, 7-9, and 14-16 dpf in
the dark (Table 3). We observed that the standard deviation of
IBI pitch for 4 and 14 dpf larvae was 38.1% higher and 11.3%
lower, respectively, than the average result of 7 dpf larvae (Ta-
ble 3). Across strains at 7 dpf, the variation was much smaller:
from 11.8% higher to 11.2% lower. Similarly, relative to 7 dpf lar-
vae, sensitivity of 4dpf larvaewas considerably lower (-42.5%), and
increased to 23.6% higher by 14 dpf (Table 3); variations among
7 dpf strains were up to 10.0% lower and 15.4% higher.
Our analysis of new data supports three key conclusions. First,
SAMPL can uncover small, systematic differences in the way fish
swim and stabilize posture. Second, SAMPL can make longitu-
dinal measures of the same complement of animals as they de-
velop. Third, relative to development, the effect of genetic back-
ground is small. We conclude that SAMPL’s capacity to resolve
small differences supports its usefulness as a tool screen formod-
ifiers of postural control and vertical locomotor strategies.

Estimating SAMPL’s resolution
Our dataset establishes SAMPL’s ability to resolve small kinematic
differences between cohorts. How does SAMPL’s power change
as a function of the size of the dataset? We used resampling
statistics to estimate SAMPL’s resolution as a function of the num-
ber of the bouts (Methods). To ensure our most conservative esti-
mate, we resampleddata combinedacrossAB, SAT andWTgeno-
types at 7dpf.
As expected, the width of the confidence interval for any es-
timated parameter decreased with the number of bouts (Fig-
ure 8A). The most challenging parameter to estimate is coordi-
nation between fin and trunk (fin-body ratio) The steepness with
which the confidence interval width decreases follows the num-
ber of regression coefficients necessary for each measure: fin-
body ratio (4 parameters); bout timing (3 parameters); and steer-
ing or righting (2 parameters). We therefore propose that these
particularmeasures can serve as ageneral guide for the challenge
of estimating parameters within a SAMPL dataset.
A fundamental challenge for all screens is determining the sam-
ple size required to correctly reject the null hypothesis33 . We ad-
dress this question by asking howmuch data one would need to
gather in order to detect meaningful effects. We simulated dif-
ference of particular magnitudes by imposing an offset on each
parameter (sensitivity, steering gain, fin-body ratio, and righting
gain) while preserving the original variance (Methods). Offsets



were expressed as a fractional difference, and resampling was
used to estimate the effect size onewould see as a function of the
number of bouts/IBIswhencomparing kinematic parameters be-
tween theoriginal dataset and thedatasetwith an imposedeffect
(Methods).
Broadly, we find that for all kinematic parameters, the smaller
the percent change, the larger the required sample size (Fig-
ure 8B). Steering and righting gains require the fewest bouts to
detect a 1-2% change with an effect size > 0.5 (Figure 8B, green
and red). However, sensitivity and fin-body ratio require relatively
larger datasets to confidently discriminate small changes (Fig-
ure 8B, brown and magenta). We conclude that the full “two-
week” dataset we generated using SAMPL (n = 121,979 bouts) is
sufficient to reveal any biologically-relevant differences between
two conditions.
In summary, these simulations demonstrate that a single SAMPL
rack divided into two conditions (6 apparatus / each) could, in two
standard 48-hour runs, generate sufficient data to resolve mean-
ingful differences in postural and locomotor kinematics between
two conditions.

DISCUSSION

We present SAMPL, a scalable solution to measure posture and
locomotion in small, freely-moving animals. We start with a
brief overview of the hardware and software, with comprehen-
sive guides to every aspect of SAMPL’s hardware and software in-
cluded in the Appendices. Next we illustrate SAMPL’s flexibility
with raw video & real-time measurements from three common
model organisms: Drosophila melanogaster (fly), Caenorhabti-
tis elegans (worms), and Danio rerio (zebrafish). To illustrate
the depth of insight accessible using SAMPL we explored a new
dataset – consisting of two weeks worth of data – that illuminates
four key parameters of zebrafish navigation in depth: bout tim-
ing, steering, fin-body coordination, and righting. We made two
discoveries using SAMPL’s analysis suite: (1) systematic changes
to zebrafish posture and locomotion across genetic backgrounds
and (2) that these changes were small relative to variation across
developmental time. Finally, we use our new dataset to define
SAMPL’s resolution: howmuchdata an experimenterwould need
to collect to detect meaningful effects. Taken together, SAMPL
provides a screen-friendly solution to investigate vertical locomo-
tion and/or other behaviors using common small model organ-
isms, and a turn-key solution to study balance in larval zebrafish.
More broadly, our approach serves as a template for labs looking
to develop or scale their own hardware/software. Below we detail
SAMPL’s innovations and limitations, andmake a case for screens
to address unmet clinical needs for balance disorders.

SAMPL’s innovations
One of SAMPL’s key innovations is to measure vertical behavior,
where the effects of gravity play a role. The overwhelming ma-
jority of studies monitor animal behavior from above, where an-
imals are constrained to a horizontal plane. For most animals –
especially those that swim or fly – vertical navigation and its neu-
ronal representation34,35 is vital. Further, maintaining posture in
the face of gravity is a universal challenge36–38 , particularly as ani-
mals develop16,39 . SAMPL can illuminate animal trajectories dur-
ing exploration of depth.
SAMPL reduces the dimensionality of behavior along a number
of axes in real-time. First, by focusing on a homogeneous part
of the behavioral arena, SAMPL bypasses a number of imaging
challenges and difficulties involved in interpreting behavior along
arena walls40 . Second, by rejecting frames with multiple ani-
mals in view at the same time SAMPL incorporates animal-to-
animal variability4within eachestimatedparameterwithout hav-
ing to keep track of individuals; the narrow chamber (Figure 1E)
is ideal for single-animal experiments if such variability is of in-
terest. Third, while large enough to permit unconstrained behav-
ior, the anisotropic dimensions of SAMPL’s behavioral arenas (Fig-
ure 1E) facilitate measurements in the vertical axis. SAMPL’s de-
sign choices thus facilitate rapid extraction of behavioral parame-
ters relevant for posture and locomotion.
SAMPL was designed to scale efficiently. Data is gathered by

a compiled executable, allowing SAMPL to run three apparatus
off a single computer, reducing costs and space. A SAMPL rack
consists of 12 apparatus running off four computers with a foot-
print of 24"x36"x81.5" (LxWxH). The key components such as the
camera are readily available from multiple suppliers. Taken to-
gether, SAMPL can be used immediately to screen and/or to pro-
vide videographic data from freely moving animals at scale.
Our new dataset, gathered in two weeks, illustrates the power
of SAMPL’s analysis/visualization workflow for studies of larval ze-
brafish balance. While SAMPL can and does save video, by de-
sign it extracts only three parameters in time: the (x,z) coordinates
of the animal and the angle between the body and the horizon.
As we demonstrate here, this small set of parameters defines be-
haviors larval zebrafish use to swim and balance in depth: bout
timing (Figure 3), steering (Figure 4), fin-body coordination (Fig-
ure 5), and righting (Figure 6). While each parameter has been
previously defined16–18 , the new data we present here illustrates
differences across genetic backgrounds anddevelopment and al-
lows granular estimation of statistical sensitivity. Taken together,
SAMPL’s focus facilitates exploration of unconstrained vertical be-
havior.

Limitations & comparisons with other approaches
Any apparatus necessarily reflects a set of trade-offs. Consequen-
tially, each of SAMPL’s innovations can reasonably be recast as
a limitation depending on experimental priorities. For example,
SAMPL’s focus on a subset of space and parameters is ill-suited to
reconstruct a catalog of behaviors from videographic measure-
ments i.e. a computational ethogram11,20 . Similarly, SAMPL as-
sumes that the animal’s trajectory reflects coordinated use of its
effectors (limbs/trunk/wings). While SAMPL’s videos would be an
excellent starting point for markerless pose estimation, detailing
the links between effector kinematics and resultant changes to
posture and trajectory may be better served by a multi-camera
setup8,9 . SAMPL’s processing is exclusive to one animal; other ap-
proaches are thereforenecessary to resolve social interactions7,41 .
Finally, SAMPL’s analysis/visualization toolset incorporates priors
for movement of zebrafish only – studies of other species would
require a moderate investment of effort. Notably, an earlier ver-
sion of SAMPL’s detection algorithm was successfully used for
data acquisition in a fly olfactory behavior assay42,43 with mini-
mal changes, arguing for the extensibility of our approach.

SAMPL for measuring Drosophila behavior
SAMPL offers advantages over previous methods for mea-
suring negative gravitaxis, an innate behavior of Drosophila
melanogaster44 . Themost widespreadmethod, called the bang
test, consists of banging flies down inside a vertical tube and then
counting the number of flies that walk an arbitrary vertical dis-
tance in an arbitrary amount of time44–47 . This method star-
tles the flies, which may confound the behavior, and the flies are
limited in directional choice. Using SAMPL, a measurement of
fly vertical position and orientation is instantaneously acquired
without needing to startle the flies. Another Drosophila gravi-
taxis assay is the geotaxis maze48 , that allows the flies to make
a series of up-or-down choices as they move across the maze to-
wards a light. While the flies are not startled in this assay, they
are still constrained to moving only up or down. SAMPLs high
resolution camera permits continuousmonitoring of free vertical
walking behavior, as well as high-resolution monitoring of head,
wing, leg, and antenna positions. While SAMPL has been de-
signed to monitor behavior in the vertical plane, the hardware
and software strategies we have developed for high throughput
recording could be similarly adapted to increase the throughput
of measuring other Drosophila behaviors such as grooming49 ,
sleep50 , courtship51 , and aggression52 . Because SAMPL has
both high resolution recording and the ability to scale, screen-
ing through microbehaviors like head tilting or limb position-
ing is possible. Taken together, SAMPL’s resolution, throughput,
and adaptability complement and extend current approaches to
measure Drosophila behavior, particularly in the vertical axis.

SAMPL for measuring C. elegans behavior
The simple nervous system of C. elegans is a powerful model
to study neural circuits that control posture and movement. C.



elegans possess a rich and tractable repertoire of motor con-
trol53 . For example a pattern generator creates sinusoidal waves
of muscle contraction that propel C. elegans on a solid substrate,
and these sinusoidal movements are sculpted by proprioceptive
feedback54 . Proprioceptive feedback also controls transitions be-
tween sinusoidal crawling and non-sinusoidal bending that can
propel animals in a liquid environment55–57 . Other sensory stim-
uli elicit coordinated motor responses that are critical for naviga-
tion. Decreasing concentrations of attractive odorants and gus-
tants trigger reversals followed by a pirouette or omega bend,
which results in a large-angle turn that reorients animals58,59 . A
distinct navigation behavior involves precise steering of an ani-
mal as it follows an isotherm in a temperature gradient60,61 or
tracks a preferred concentration of gustant62 . The resolution and
scalability of SAMPLoffers the opportunity todetermine the cellu-
lar, molecular, and genetic underpinnings of these diversemotor
control mechanisms.
C. elegans behavior becomes complex in enriched 3D environ-
ments, with animals using strategies for exploration and dispersal
not seen under standard laboratory conditions63 . Behavior track-
ers that have been used to study C. elegans kinematics are gen-
erally restricted to analysis of behaviors on a surface. By contrast,
SAMPL measures behavior in a volume and is well-suited to the
study of newly discovered behaviors that are only expressed in 3D
environments. One such example is gravitaxis, where C. elegans
display both positive64 and negative gravitaxis65 , underscoring
the need for additional pipelines to test behavior66 . The newdata
we present here establishes that SAMPL offers a powerful com-
plement to existing pipelines for C. elegans assays of behavior in
3D.

SAMPL for measuring zebrafish behavior
SAMPL joins a decades-long tradition of apparatus that has, col-
lectively, established the larval zebrafish as a key vertebratemodel
to understand the neural control of posture and locomotion13–15 .
Broadly, these devices sit on a continuum that represents a trade-
off between imaging resolution and throughput. At one end,
exquisite measures of tail or eye kinematics are available when
imaging single animals that are partially restrained67 , or con-
tained in a small field of view68 . Such devices are particularly
useful when combined with imaging or perturbations of neu-
ronal activity, but at the cost of throughput. At the other end
are devices that measure activity when single animals are con-
strained to small arenas, such as the ~8 mm2 wells in a 96-well
plate6,69–71 . These devices lend themselves well to screens, and
offer commercial options, but the range of behaviors is com-
pressed72 . Like other attempts to preserve high-resolution kine-
matic information while accommodating natural unconstrained
behavior22,73–78 , SAMPL sits between these two extremes, join-
ing other open-source software packages such as Stytra79 and
Zebrazoom80 . We see SAMPL as a complementary tool. SAMPL’s
emphasis on vertical behavior and its scalability position it to
leverage the advantages of the zebrafish model for screens – ei-
ther as a primary resource, or to follow-up on promising “hits”
identified with higher-throughput approaches6 .

Screening
Balance disorders present a profound and largely unmet clini-
cal challenge19 . Because the neuronal architecture for balance
is highly conserved and the fundamental physics (i.e. gravity is
destabilizing) is universal, animal models represent a promising
avenue for discovery. Due to their size, low cost, molecular ac-
cessibility, high fecundity, and conserved biology small animals
– both vertebrates and invertebrates81 – have long been used in
successful screens of both candidate genes82 , peptides83 and
therapeutics84,85 . Zebrafish are an excellent exemplar, particu-
larly in the space of neurological disorders3 , withwell-established
approaches for candidate gene screens2,5 , peptides86 , small
molecules87–91 , and disease models92 . Using SAMPL with ze-
brafish, our dataset establishes a foundation to screen for balance
modifiers in health & disease.
One particular arena where zebrafish screens for balance/posture
could have a profound impact is in addressing the unmet thera-
peutic need that exists for a neurodegenerative tauopathy: pro-

gressive supranuclear palsy (PSP). PSP is initially characterized by
balance impairments, falls, vertical gaze palsy, and rigidity93,94 .
Falls are central to early95 PSP presentation and diagnosis96,97
and lead to fractures and hospitalization96,98 . Currently, no
treatments improve balance. Studies of posture99–103 , gravi-
ception104 , reflexes105–108 , electromyography109,110 , and neu-
ral balance circuits in PSP103,111–115 are often underpowered, in-
consistent, and have yet to identify the specific mechanism or
substrate causing falls. Like most genes and subcortical struc-
tures116–123 the genetic and anatomical substrates of PSP are
conserved between humans and zebrafish124–127 . Here, using
SAMPL, we define behavioral endpoints that reflect how patho-
logical zebrafish might “fall.” By establishing SAMPL’s resolution,
our data lay the foundation for impactful discovery in the space
of a neurodegenerative disorder with balance pathology.

Future prospects
SAMPL uses low-cost videographic and computing hardware to
make novel behavioral measurements. By optimizing scalabil-
ity, resolution, and extensibility, SAMPL allows experimenters to
rapidly measure unconstrained behavior as animals navigate in
depth. We have used SAMPL with a model vertebrate, zebrafish,
to gain insight into posture and vertical locomotion, and to lay the
groundwork for future screens. A wide variety of neurological dis-
orders present with balance and locomotor symptoms. SAMPL
offers a way to both understand the fundamental biology of bal-
ance, as well as means to evaluate candidate therapeutics to ad-
dress this unmet need. More broadly, SAMPL stands as an exem-
plar and resource for labs looking todevelop, adapt, or scale video-
graphic apparatus to measure behavior in small animals.
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Figure 1: Schematic illustrations of SAMPL hardware design.
(A) Overview of the apparatus without aluminum rails, side panels, and the top panel. Equipment modules mounted on the breadboard are,
from left to right, IR camera and lens, chamber holders, and IR illumination module.
(B) Exploded-view drawing of the IR illumination module.
(C) Exploded-view drawing of the camera and lens module.
(D) Exploded-view drawing of a chamber holder
(E) Design of fish chambers. From left to right: 3D illustration of a standard chamber (upper) and a narrow chamber (lower); front view of the
u-shaped acrylic middle piece for the chambers; side view of the chamber. Pink squares illustrate the recording field of view. i = 20 mm; s = 1.5
mm.
(F) Dimensions of the apparatus frame and breadboard.
(G) Design and dimensions of the apparatus lid.
(H) Schematic illustration of a set of three SAMPL apparatus and a small-form-factor computer case on a 24"x36" shelf.



Figure 2: High-definition recording and measurement of animal locomotion using SAMPL.
(A) Example of a recorded frame with a Drosophila melanogaster (white box) in the SAMPL apparatus. Dashed line indicates heading of the fly
relative to vertical up (north).
(B) Example of an epoch of a walking fly. Walking speed and heading are plotted as a function of time. Gray and cyan lines marks resting and
grooming period, respectively (Movie 2).
(C) Example of a recorded frame with a Caenorhabditis elegans (white box) in the SAMPL apparatus. Dashed line indicates approximated angle
of the worm relative to vertical.
(D) Example of an epoch of a swimming worm. Z position and approximated angle are plotted as a function of time. Cyan vertical lines label the
time when the plane of movement is perpendicular to the imaging plane (Movie 2).
(E) Example of a recorded frame with a 7 dpf Danio rerio larva (white box) in the SAMPL apparatus. Pitch angle is determined as the angle of the
trunk of the fish (dashed line) relative to horizontal. Positive pitch indicates nose-up posture whereas negative pitch represents nose-down
posture.
(F) Example of an epoch containing multiple swim bouts (arrows). Swim speed and pitch angles are plotted as a function of time. Dashed line
marks the 5 mm/s threshold for bout detection. Cyan vertical lines label time of the peak speed for each bout (Movie 3).



Figure 3: Modeling timing of swim bouts reveals larval sensitivity to pitch changes.
(A) An inter-bout interval (IBI, brown area) is defined as the duration when swim speed is below the 5mm/s homeostasis threshold (dashed line)
between two consecutive bouts with a 100ms buffer window (grey area) deducted from each end.
(B) Distribution of IBI duration (left) and mean pitch angle during IBI (right).
(C) Bivariate histogram of bout frequency and IBI pitch. Bout frequency is the reciprocal of IBI duration.
(D) Bout frequency plotted as a function of IBI pitch andmodeled with a parabola (black line, R2 = 0.14). Brown dots indicate binned average of
IBI pitch and bout frequencies calculated by sorting IBI pitch into 3°-wide bins.



Figure 4: Larval vertical navigation is led by steering toward trajectory
(A) Schematic illustration of two climbing mechanics: (1) a larva may generate a thrust (arrow) toward the pointing direction (dashed line) at the
initial of a bout (left); (2) a larva can steer (green arrow) toward an eccentric angle before the thrust (right). The offset between trust angle and
the direction the larva point toward at bout initial is termed trajectory deviation (purple).
(B) Distribution of trajectory deviation.
(C) Changes of pitch angles relative to initial pitch plotted as a function of time (dark lines) overlaid with distribution of pitch change at time of
peak speed (green).
(D) Trajectory deviation (purple) plotted as a function of posture changes from bout initial to time of the peak speed (green). Black line indicates
binned average values. Positive correlation between trajectory deviation and posture change demonstrates that larvae steer toward the
trajectory of the bout.
(E) To measure the gain of steering compared to trajectory deviation, pitch angels at time of the peak speed are plotted as a function of
trajectory. Steering gain is determined as the slope of the fitted line (Pearson’s r = 0.96).
(F) Schematic illustrations demonstrating how steering gain associates steering (green arrows) with trajectory deviation (purple).



Figure 5: Steering requires coordination of fin and body.
(A) Swim speed (top) and angular velocity (bottom) plotted as a function of time. Angular velocity peaks (asterisk and dotted area, mean±SD)
during steering phase (green) before time of the peak speed. Angular velocity is adjusted by flipping signs of bouts with nose-down rotations
during steering (mean±SD across experimental repeats). Shaded region in the upper panel indicates mean±SD across all quantified swim
bouts.
(B) Histogram of time of peak angular velocity, binned by frame, across experimental repeats with mean±SD plotted below.
(C) Illustration of components that contribute to trajectory deviation. Larvae rotate their bodies starting from bout initial (blue) and reach peak
angular velocity (asterisk) before peak speed. Any rotation generated during decrease of angular velocity is considered residual (grey). At time of
peak speed, there is an offset between the pitch angle (dashed line) and bout trajectory (arrow) which is termed attack angle (orange). Body
rotations, residual, and attack angle add up to trajectory deviation.
(D) Distribution of attack angles in control fish (left) and fish after fin amputation (right). Dashed lines indicate 0 attack angle.
(E) Attack angles plotted as a function of body rotations (left, blue) or residual rotations (right). Rotations and residuals are sorted into 0.5°-wide
bins for calculation of binned average attack angles. Swim bouts with negative attack angles while having steering rotations greater the 50th
percentile (hollow squares) were excluded for binned-average calculation.
(F) Attack angles plotted as a function of body rotations (blue line) and fitted with a logistic model (black line, R2 = 0.31). Fin-body ratio is
determined by the slope of the maximal slope of the fitted sigmoid (magenta). Rotations are sorted into 0.8°-wide bins for calculation of binned
average rotations and attack angles (blue line). Swim bouts with negative attack angles while having steering rotations greater the 50th
percentile were excluded for sigmoid modeling.
(G) Schematic illustration of how fin-body ratio reflect climbing mechanics.



Figure 6: Righting rotation restores posture after peak speed.
(A) Pitch angles plotted as a function of time (dark lines) overlaid with distribution of pitch angles before (left) and after bouts (right). Red area
indicates duration after peak speed when pitch distribution narrowed.
(B) Illustration of righting behavior. Larvae rotate (red arrows) toward more neutral posture after peak speed.
(C) Distribution of rotation during righting (red in A).
(D) Righting rotation plotted as a function of initial pitch angles.
(E) Righting gain is determined by the absolute value of the slope (red dotted line) of best fitted line (black line). The x intersect of the fitted line
determines the set point (blue cross) indicating posture at which results in no righting rotation.
(F) Schematic illustration of righting rotation (red arrows), righting gain, and set point (blue dashed line).



Figure 7: Variations of kinematic parameters among three different zebrafish strains.
(A) Average pitch angles during IBI.
(B) IBI duration (AB vs SAT p-adj = 0.0128; AB vs WT p-adj = 0.0034).
(C) Standard deviation of IBI pitch (AB vs WT p-adj = 0.0001; SAT vs WT p-adj = 0.0479).
(D) Bout frequency plotted as a function of IBI pitch modeled with parabolas.
(E) Sensitivity to pitch changes (AB vs WT p-adj = 0.0319).
(F) Baseline bout rate.
(G) Attack angles plotted as a function of body rotations modeled with sigmoids.
(H) Fin-body ratio (AB vs WT p-adj = 0.0066).
(I) Height of the sigmoid in G.
(J) Steering gain of different strains.
(K) Righting gain of different strains (AT vs SAT p-adj = 0.0133).
(L) Set point (SAT vs WT p-adj = 0.0094). For each strain of AB/SAT/WT, N = 10/7/10 repeats, n = 62457/27990/31532 bouts and
55683/25964/27946 IBIs from 225/117/195 fish.



Figure 8: Statistics of regression analysis for swim kinematics.
(A) Confidence interval (CI) width of kinematic parameters plotted as a function of sample size at 0.95 significance level (mean± SD as ribbon).
Errors were estimated by resampling with replacement from the complete dataset.
(B) Effect size plotted as a function of sample size at various percentage differences. Refer to Methods for details of computation.



Figure S1: Custom breadboard for SAMPL base
(A) Custom aluminum breadboard, not anodized, 0.5" thick. All holes (8 total) counterbored for 1/4"-20 cap screw. Grooves to be cut on the side
of the breadboard OPPOSITE to the counterbore.



Movie 1
Movie 1. Stop motion instruction for box assembly.

Movie 2
Movie 2. Example of recorded epochs of a fly, a shrimp, and a worm. Scale bar: 2 mm.

Movie 3
Movie 3. Top: example of a recorded epoch of a freely-swimming zebrafish larva using the apparatus. Bottom: swim speed and pitch
angles plotted as a function of time. Scale bar: 1 mm.



Table 1: List of parts, prices per 12/2022

Computer & software licenses ($2,300; one computer runs three apparatus)

RAM (64GB) Amazon B0884TNHNC
Case (small form factor) Amazon B08BF8YMXC
Motherboard (Mini-ITX, AM4 CPU slot, on-board NIC) Amazon B089D34SZT
Solid state hard drive (1TB) Amazon B08V83JZH4
CPU w/embedded GPU (AMD Ryzen 7) Amazon B091J3NYVF
Quiet CPU fan (Noctua) Amazon B075SG1T3X
Power supply (450W) Amazon B07DTP6SLJ
USB card Amazon B08B5BNZQ6
Operating system (Windows 10 Professional) Amazon B00ZSHDJ4O
Vision Development License (Image Processing) National Instuments 778044-35
Vision Acquisition License (Image Acquisition) National Instruments 778413-35
Software Runtime Engine NI LabView Runtime (free download)

Shelving unit for 12 apparatus, ($2,100)

KVM switch to share keyboard, mouse andmonitor w/cables Amazon B001V9LQ52
Monitor 1920x1080 Amazon B07F8XZN69
Keyboard Amazon B00CYX26BC
Mouse Amazon B087Z733CM
Mobile wire shelving unit w/4 shelves 36"x81.5"x24" McMaster Carr 2563T336
Extra shelf (handy to hold UPS and network gear up top) McMaster Carr 5101T497
Uninterruptible power supply Amazon B078D6KZ98
Spare battery for UPS (handy to have around) Amazon B010XF8SCI
Timer (for light/dark) Need 4, Amazon B005MMSTNG
Power strip (6’, higher shelves, 2pk) Amazon B082DVCCDR
Power strip (12’, lower shelves, 2pk) Amazon B08KZGT258
Wire ties (cable management) Amazon B096ZHHRC3
Network cables CAT6a 10G 7ft (5pk & 10pk) Amazon B01BGV2T5U
Network switch (Netgear GS110MX) Amazon B076642YPN

Networked data storage ($3,800)

500GB solid state drive for data server caching Need 2 Amazon B07M7Q21N7
Data server Synology DS1621xs+ Amazon B08HYRYLPS
16TB Hard drives for data server. Order 7 (6+1spare) Need 7 Amazon B07SPFPKF4
10GB NIC for data server Amazon B07G9N9KJT

Enclosure (BaseLabTools/Amazon/MetalsCut4U, $375 per apparatus)

Breadboard (see image w/measurements) SABCUST
Rails for enclosure (see measurements) X2020-CUST
Hardboard for enclosure walls (see measurements) X2020-HB-CUST
Right angle joiner for LED strip Need 2 X2020-AB1
Joiner cube for enclosure X2020-C3W
Spring-loaded t-nuts (10pk) X2020-DTSB-M5-P10
M5-0.8 x 8mm Screws Amazon B07H18YDYB
Top: G90 galvanized steel (7.25in x 20.25in x 3in, 20 Ga.) Tray, MetalsCut4U

ThorLabs parts ($550 per apparatus)

Holds condenser SM2L05
Condenser/diffuser for IR light ACL5040U-DG6-B
Tube to distance condenser from LED SM2L20
Adapts IR light holder to post SM2RC
Adapts SM2 tube to SM1 tube SM1A2
Tube to hold heatsink SM1M10
Adapts heatsink / LED to SM1 tube SM1A6FW
Adapts camera to SM1 tube SM1A10
Adapts SM1 tube to imaging lens SM1A9
Filter to pass only IR light FGL830
Adapts camera/lens to post SM1RC
Holds filter / allows camera/lens mounting SM1L03
Holds imaging chamber Need 2 FP01
Post-holder for chamber holder / IR assembly Need 3 PH1
Posts for chamber holder / IR assembly Need 3 TR1
Post-holder for camera/lens PH1.5
Post for camera/lens TR1.5
1/4-20" screws to attach post-holder to breadboard SH25S038
1/4-20" low-profile screws for enclosure SH25LP38

IR LED (assembly required, $100 per apparatus)

12V 2A power supply for IR Amazon B00Q2E5IXW
XT60H connector for IR lights Amazon B09ST768W2
940nm 2.6V IR LED Opulent LST1-01F09-IR04-00 Mouser 416-LST101F09IR0400
Thermal epoxy (attach heatsink to ThorLabs SM1A6FW Amazon B08Z73HH23
Ohmite heat sink Mouser SV-LED-325E
HexaTherm tape (attach LED to heatsink) LEDSupply A001
BuckBlock 1A LEDSupply 0A009-D-V-1000

Daylight LED, ($50 for three apparatus)

12V 1A power supply for daytime lights (5pk) Amazon B00FEOB4EI
SMD5050 6500K white LED 12V light strip 60LED/meter Amazon B075R4X1XL
DC power pigtail (to connect LED strip to power) Amazon B0768V9V5Q
T tap connectors Amazon B085XGYW1B



Imaging, ($1,200-$1,800 per apparatus)

Camera (IMX174 chip, USB 3 interface) e.g. Basler acA1920-155um
Lens (50mm, VIS-NIR coating) Edmund Optics 67-717
USB cable e.g. Edmund Optics 86-770

Chambers, laser cut by Pololu ($200)

Chamber sides 12mm (10.2 - 12.75mm) #2025 black cast acrylic, opaque
Chamber faces 1.5mm (0.8 - 2.1mm) clear cast acrylic
Weld-On 4 acrylic cement & applicator Amazon B00TCUJ7A8

Table 2: Recording parameters for different organisms

Zebrafish ≤ 12 dpf Zebrafish > 12 dpf Drosophila Parhyale C. elegans

Body low 14 14 100 90 20
Body high 255 255 255 255 255
Head low 45 45 30 125 21
Head high 255 255 255 255 255
Initial cut low 25 25 45 25 3
Initial cut high 120 120 145 400 30
Size low 180 250 80 100 30
Size high 260 450 180 450 80



Table 3: Measured parameters of posture and locomotion across development

Parameter Unit 4 dpf 7 dpf 14 dpf Format Definition

Peak speed mm/s 10.42
(3.85)

13.02
(4.99)

11.41
(4.20)

Mean of
bouts (SD) Peak speed of swim bouts

Initial pitch deg 5.21
(31.49)

0.77
(21.81)

0.54
(18.64)

Median of
bouts (IQR) Pitch angle at 250ms before the peak

speed

Pitch at peak
speed

deg 9.74
(29.16)

6.84
(20.35)

4.36
(19.73)

Median of
bouts (IQR) Pitch angle at time of the peak speed

Post-bout pitch deg 10.57
(23.86)

10.21
(16.70)

6.88
(16.05)

Median of
bouts (IQR) Pitch angle at 100ms after the peak

speed

End pitch deg 10.85
(23.59)

10.78
(16.79)

7.56
(15.55)

Median of
bouts (IQR) Pitch angle at 200ms after the peak

speed

Bout trajectory deg 12.29
(27.52)

8.92
(20.19)

7.85
(22.89)

Mean of
bouts (SD) Peak trajectory, tangential angle of the

trajectory at the time of the peak speed

Bout displacement mm 1.12
(0.63)

1.36
(0.64)

1.35
(0.70)

Mean of
bouts (SD) Average displacement of fish during a

bout when speed is greater than 5mm/s

Inter-bout interval s 1.78
(2.61)

1.89
(2.75)

2.13
(2.80)

Median of
bouts (IQR) IBI, duration between two adjacent swim

bouts

Bout frequency Hz 0.56
(0.70)

0.53
(0.69)

0.47
(0.59)

Median of
bouts (IQR) Frequency of swim bouts determined by

the reciprocal of inter-bout interval

IBI pitch deg 8.75
(17.73)

8.06
(13.07)

6.08
(11.24)

Mean of
bouts (SD) Mean pitch angle during inter-bout inter-

val

IBI pitch standard
deviation

deg 17.48
(1.60)

12.66
(1.80)

11.23
(1.28)

Mean of
repeats (SD) Standard deviation of IBI pitch, a mea-

surement of stability

Sensitivity mHz/deg2 0.61
(0.18)

1.06
(0.23)

1.31
(0.34)

Mean of
repeats (SD) Sensitivity to pitch changes. Determined

by the coefficient of the quadratic term of
the parabola model for bout timing

Baseline bout rate Hz 0.51
(0.06)

0.51
(0.08)

0.47
(0.11)

Mean of
repeats (SD) Y intersect of the parabola model for bout

timing

Trajectory deviation deg 5.46
(14.53)

4.13
(11.57)

4.35
(16.39)

Mean of
bouts (SD) Deviation of bout trajectory from initial

pitch

Steering rotation deg 2.30
(7.51)

3.00
(7.33)

1.94
(6.31)

Mean of
bouts (SD) Change of pitch angle from initial (250

ms before) to the time of the peak speed

Steering gain - 0.64
(0.04)

0.67
(0.04)

0.51
(0.05)

Mean of
repeats (SD) Slope of best fitted line of posture vs tra-

jectory at the time of the peak speed

Steering-related
rotation

deg 1.72
(6.15)

1.74
(5.95)

0.99
(5.42)

Mean of
bouts (SD) Change of pitch angle from initial to the

time of max angular velocity

Attack angle deg 4.10
(16.16)

0.77
(9.68)

0.91
(5.25)

Median of
bouts (IQR) Deviation of bout trajectory from pitch at

time of the peak speed

Peak angular veloc-
ity time

ms 50.60
(7.62)

39.16
(4.96)

50.00
(5.12)

Mean of
repeats (SD) Time of peak angular velocity in ms be-

fore time of the peak speed

Fin-body ratio - 3.41
(0.86)

2.27
(0.76)

3.55
(1.98)

Mean of
repeats (SD) Maximal slope of best fitted sigmoid of

attack angle vs early rotation

Sigmoid height deg 16.47
(2.31)

10.28
(1.78)

25.15
(4.68)

Mean of
repeats (SD) Height of best fitted sigmoid of attack an-

gle vs early rotation

Righting rotation deg 0.92
(3.49)

2.64
(3.55)

1.90
(3.01)

Mean of
bouts (SD) Change of pitch angle from time of the

peak speed to post bout (100ms after
peak speed)

Righting gain - 0.15
(0.02)

0.18
(0.02)

0.18
(0.02)

Mean of
repeats (SD) Numeric inversion of the slope of best fit-

ted line of righting rotation vs initial pitch

Set point deg 13.00
(2.10)

19.47
(2.28)

13.60
(1.78)

Mean of
repeats (SD) X intersect of best fitted line of righting

rotation vs initial pitch



STAR METHODS

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr.
David Schoppik ( schoppik@gmail.com ).

Materials availability
This study did not generate new unique reagents.

Data and code availability
SAMPL source code, SAMPL executables, analysis/visualization code, raw behavior data, analyzed data used to make pa-
per figures and README.md descriptions of each are all deposited with the Open Science foundation and publicly available at
10.17605/OSF.IO/WJH25. This resource includes code to generate each figure / table in this manuscript.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
All procedures involving larval zebrafish (Danio rerio) were approved by the New York University Langone Health Institutional Ani-
mal Care & Use Committee (IACUC). Zebrafish larvae were raised at 28.5°C on a standard 14/10 h light/dark cycle at a density of 20-
50 larvae in 25-40ml of E3 medium before 5 days post-fertilization (dpf). Subsequently, larvae were maintained at densities under
20 larvae per 10 cm petri dish and were fed cultured rotifers (Reed Mariculture) daily. Larvae that had their behavior measured at
14 dpf were raised as stated above before being moved to 2 L tanks with 300ml of cultured rotifers at 9 dpf. At 13 dpf, they were
transferred back to petri dishes with E3medium for adaptation.
Larvae with different strains were achieved by crossing Schoppik lab strain with a mixed AB, TU, andWIK background to three dif-
ferent wild-type strains: AB (Zebrafish International Resource Center), mixed background of AB/WIK/TU, or SAT (Zebrafish Interna-
tional Resource Center). Reference parameter values in Table 3 for 4, 7, 14 dpf fish were gathered using the AB strain fish.
Drosophila melanogaster (w1118) were raised at 23°on standard cornmeal-agar food under a 12/12 light/dark cycle.
Parhyale hawaiensiswere maintained in shallow plastic tanks in 35 ppt sea water (Instant Ocean) under ambient illumination, and
fed weekly on a combination of carrot, kelp flakes (Starwest Botanicals), and shrimp pellets (Aqueon) before behavior recording.
Caenorhabditis elegans (C. elegans) were grown at 20°on nematode growth medium agar plates seeded with Escherichia coli
OP50 as previously described128 .

METHOD DETAILS
Behavior experiment
Larvae at desired age (4, 7, or 14 dpf) were transferred from petri dishes to behavior chambers at densities of 5-8 per standard
chamber and 2-3 per narrow chamber with 25-30/10-15ml of E3, respectively. After 24 h, behavior recording was paused for 30-
60minutes for feeding where 1-2 ml of rotifer culture was added to each chamber. Larvae were removed from the apparatus 48 h
after the start of the recording.
Behavior measurement in this manuscript were collected from 27 clutches of zebrafish larvae between 7 to 9 dpf under constant
darkness. 4 dpf and 14 dpf reference parameter values in Table 3 were collected from 10 clutches of zebrafish larvae under con-
stant darkness. Finless data was generated using 4 clutches of larvae under constant darkness. For all experiments, a single clutch
of larvae produces one experimental repeat with at least 3 behavior boxes each containing 5-8 larvae per standard chamber or 2-3
fish per narrow chamber.
For Drosophila recording, four flies were transfered to a narrow chamber. A small piece of water-dampened kimwipe was put at the
bottom of the chamber to maintain humidity. A n acrylic plug was secured at the top to prevent them from escaping the chamber.
We secured the chamber with the flies in the SAMPL apparatus and performed the standard SAMPL experiment using recording
parameters provided in Table 2.
For recording of Parhyale hawaiensis geotaxis, one Parhyale was transfered to each narrow SAMPL chamber filled with 20ml of 35
ppt sea water (Instant Ocean). Chambers were secured in the SAMPL apparatus as described above. Refer to Table 2 for recording
thresholds for Parhyale detection.
To image swimming C. elegans, eight starved N2 adult hermaphrodites were transferred to a narrow chamber filled with 15ml M9
buffer (3 g/l KH2PO4 ; 6 g/l Na2HPO4 ; 0.5 g/l NaCl; 1 g/l NH4Cl) which was secured in the SAMPL apparatus as described above. Be-
havior recording was started immediately afterwards. Refer to Table 2 for SAMPL thresholds for C. elegans detection.

Fin amputation
6 dpf zebrafish larvae were anesthetized in 0.02% tricaine methanesulfonate (Syndel) and transferred to 3% Methylcellulose
(Sigma). Fin amputation was done by removing pectoral fins using fine forceps (FST). Specifically, one pair of forceps was used to
stabilize the head of the fish and a second pair was used to grab the joint and pull off the fins. Finless larvae were washed three-
times in E3 and fed with cultured rotifers before behavior assessment at 7 dpf.

Video acquisition
Movie 1 was captured using Sigma fp digital camera (Sigma Co.). Video footage was edited and annotated using Premiere Pro
(Adobe). Movies 2 & 3 was captured with the innate video capture function in SAMPL software using recording parameters de-
scribed in Table 2. Movie 3 was edited using Adobe Premiere Pro (Adobe) to combine with timeseries data.

QUANTIFICATION AND STATISTICAL ANALYSIS
Behavior analysis
Behavior data was analyzed using the Python analysis pipeline SAMPL_analysis_visualization. SAMPL_analysis() function was used
to calculate swim parameters, extract bouts and inter-bout intervals (IBIs) from the raw data, and align swim bouts by the time of
the peak speed.
Each run of the experiment (recording from “start” to “stop”) generates one data file (∗.dlm) containing recorded raw parameters in-
cluding time stamp, fish body coordinates, fish head coordinates, pitch angle, epoch number and fish length at every time point. An
epoch is defined by a duration where the number of detected pixels falls within the lower and upper threshold for recording, indi-
cating detection of fish in the field of view.



To extract bouts from the raw data, first, swim features, such as speed, distance, trajectory, angular velocity, etc., were calculated us-
ing basic parameters and time interval. Next, epochs that were longer than 2.5 s, contain maximum swim speed greater than 5
mm/s, and pass various quality-control filters were selected for bout extraction. Epochs containing multiple bouts were segmented
and truncated so that each detected bout contains data from 500ms before to 300ms after the time of the peak speed. Then,
bouts containing 800ms of swim data were aligned by the time of the peak speed and saved for further analysis.
All further quantification was performed on data during zeitgeber day, namely the 14 h light time for fish raising under 14/10 h
light/dark cycle.
To calculate IBIs, epochs with multiple bouts are selected and the duration of swim speed below the 5mm/s threshold between
two consecutive bouts is calculated. A 100ms buffer window is then deducted from each end of the duration to account for errors
of swim detection (Figure 3A). Pitch angles during each IBI were averaged to generate an IBI pitch (Figure 3B).
Definition of other bout parameters can be found in Table 3. All bout parameters (except for kinetic parameters explained in the
next section) reported in the main text and Table 3 are mean values across swim bouts collected frommultiple experimental re-
peats. One experimental repeat is defined as behavior data collected from one clutch of fish over 48 h using at least three boxes.

Computation of kinetic parameters
To calculate larvae sensitivity to pitch changes (Figure 3), we plotted bout frequency as a function of IBI pitch. The data was mod-
eled using a quadratic polynomial regression (least squares) defined by function:

y = a(x− b)2 + c

where the coefficient of the quadratic term a indicates sensitivity and the y-intersect c represents baseline bout rate.
To calculate steering gain (Figure 4), we first computed bout trajectory defined by the tangential angle of instantaneous trajectory.
Pitch angles at time of peak speed were then plotted as a function of bout trajectories and modeled with linear regression (least
squares). The slope of the best fitted line was termed the “steering gain.”
Time of peak angular velocity in Figure 5 was computed using adjusted angular velocity. First, pitch angles for each bout were
smoothed by a window of 11 frames and used for calculate angular velocity. Next, we flipped the signs of angular velocity for bouts
that started with nose-down rotation so that all bouts started with positive angular velocity. To calculate time of peak angular veloc-
ity, we took the median angular velocity at every time point across all bouts from the same experimental repeat and found the time
for the peak. Peak angular velocity times across all experimental repeats were then averaged to generate mean peak time.
For fin-body coordination analysis (Figure 5), we selected swim bout that are faster than or equal to 7 mm/s. Bouts with steering ro-
tations (posture change from -250ms to 0 ms) greater than the 50th percentile while having a negative attack angle were further
excluded from analysis. To calculate fin-body ratio, we plotted attack angles as a function of early rotation. Attack angle is defined
as the difference between bout trajectory and pitch at time of peak speed. Body change related to steering were calculated by sub-
tracting pitch angles at time of max angular velocity by initial pitch. Attack angle-rotation plot was then fitted with a logistic func-
tion defined by

y = a+
h

1 + e−k(x+b)

where h is the height of the sigmoid. Fin-body ratio was defined by the maximal slope estimated using kh/4.
To calculate righting gain and set point (Figure 6), righting rotation, defined by the pitch changes from time of peak speed to 100
ms after peak speed, was plotted as a function of initial posture. Righting gain was determined by the absolute value of the slope
of the best fitted line. The x intersect of the fitted line determines the set point (Figure 6E, blue cross) indicating posture at which
results in no righting rotation.

Estimating effects of sample size on statistical modeling of bout kinetics
For statistical analysis of swim kinetics (Figure 8A), the 7 dpf constant dark behavior dataset was sampled for 20 times at given
sample number for calculation of swim kinetics and CI width. Specifically, sensitivity is determined by the coefficient of the
quadratic term of the fitted bout-timing parabola as stated above. To plot estimated error as a function of the number of IBI, sets
of data with N number of IBIs were sampled from the 7 dpf constant dark behavior dataset. However, different from the calculation
of R2 above, the total dataset was sampled for 20 times for each desired number of IBIs (N). Regression analysis was performed on
each set of sampled data to calculate sensitivity and its standard error. Estimated errors were used to calculate CI width at 0.95 sig-
nificance level using normal distribution for each sampled dataset.
Similarly, steering gain and righting gain and their estimated errors were calculated from N number of bouts sampled from the
original dataset. Estimated error was used to calculate CI width at 0.95 significance level for each sampled dataset. Sampling at
each N was repeated for 20 times to generate error bars on the CI widths.
Fin-body ratio was calculated from N number of bouts sampled from the original dataset and repeated 20 times for each N. Be-
cause fin-body ratio is determined as the maximal slope of the sigmoid which is given by kh/4, the variance of fin-body ratio (slope)
is calculated using formulation

Vslope = (E2
k × Vh + E2

h × Vk + Vk × Vh)× (1/4)2

where Ek and Eh are the mean of k and hwith Vk and Vh being their respective variance. Next, the standard errors of the fin-body
ratio were calculated and used to estimate CI widths at 0.95 significance level.
To estimate effect sizes at given percentage of change (Figure 8B), an artificial data set was generated by altering the coefficient
of interest while maintaining other coefficient as well as y residuals at given x values. N data points were drawn with replacement
from each data set for calculation of kinematic parameters, which was repeated 200 times to generate distributions of parameters
of interest. Effect sizes were determined using Cohen’s d:

ES =
|µsim − µori|

σ
where µsim and µori are the mean of parameter values calculated from respective data sets and σ is the standard deviation of all
400 calculated parameters. The whole process was repeated for 20 times to estimate the mean effect size at given sample size (N)
and percentage of change. To reduce program execution time, we used a fixed 40ms before time of peak speed as the time of max
angular velocity for fin-body ratio calculation. Other kinematic parameters were calculated as described above.



APPENDIX 1: HARDWARE DESIGN PRINCIPLES

Camera
At the time of writing, the best price/performance ratio when using infrared light are the Sony Exmor line of complementary metal-
oxide-semiconductor (CMOS) sensors. Sensors in the Exmor line are usually released as pairs, with a low-cost low-speed version
of the same sensor available at the same time as a more expensive high-speed version. Our initial designed used the lower-cost
IMX249 sensor; we have since switched to the faster IMX174 variant. These two sensors have a particularly large pixel size (5.86um),
low noise (7e-), and a large well depth (32,513e-) allowing for exceptional dynamic range (73dB) and signal-to-noise ratio (45dB) at
high-definition resolution (1936x1216 pixels). Quantum efficiency >900nm (i.e. the infrared range we will use) is 10%. Sony has re-
leased new sensors in the Exmor line regularly, but the trend has been to release sensors with increasingly small pixels. Thus for our
purposes, the performance of the IMX174 remains unmatched.
Machine vision cameras are available with different interfaces used to stream data to a computer. The major difference between
interfaces is the bandwidth available to each. The twomost common interfaces for machine vision cameras at the time of writing
are Gigabit Ethernet (125MB/sec) and USB3.0 (500MB/sec after overhead). Currently, there are commercially-available cameras
with higher bandwidth interfaces utilize 10-tap CameraLink (850MB/sec), 10 Gigabit Ethernet (1250 MB/sec), 4xCoaXPress 2.0
(6,250MB/sec), and PCIe x8 (7,000MB/sec). Running our preferred IMX174 sensor at full resolution and speed for 8-bit images only
requires 380MB/sec. Thus, USB3.0’s low cost and relative ubiquity made it the most attractive option for our apparatus.
There are a number of manufacturers that make cameras built around the IMX174 with a USB3.0 interface. Cameras frommajor
manufacturers all conform to the GenICam standard making them largely interchangeable, particularly when using the Vision Ac-
quisition software from National Instruments. We have successfully used cameras from Ximea (MC023MG-SY), Basler (acA1920-
155um), and FLIR (GS3-U3-23S6M-C), others include SYS-Vistek (exo174CU3) and Daheng Imaging (MER2-230-168U3M).
We have also used cameras ordered directly from different manufacturers – at a substantial discount – available via alibaba.com:
Hangzhou Huicui Intelligent Technology Co. Ltd. (A7200MU130), Hangzhou Contrastech Co. Ltd. (Mars2300S-160um), Shenzhen
Hifly Technology Co. Ltd. (MV-AU231GM). When ordering directly frommanufacturers we specify Delivery At Place (DAP) shipping.
The primary differences that we’ve encountered are whether a particular model implements binning or other on-camera compu-
tations, heat management, and different manufacturer-provided APIs. When we use multiple cameras from the samemanufac-
turer on the same computer, we have also noticed that certain cameras will throw timeout errors on some USB ports but not oth-
ers; shuffling cameras and ports has worked to solve this problem. At the time of writing, supply chain issues mean that most major
camera companies quote long lead times, but cameras ordered directly through alibaba.com all shipped within two weeks.

Illumination
Image quality is proportional to available light. Further, the size of the illuminated area defines the size of the field that can be im-
aged. Finally it is imperative for our experiments that from the fish’s perspective that the “dark” period is completely dark. We there-
fore chose 940nm LEDs as our source of infrared illumination. This left us with three options to build our illumination source: LEDs
mounted on adhesive strips, “star” style LEDs with 1-4 dies on a single PCB, and a high-power LED array. The LED strips had too
little illuminance for our purposes due primarily to the spacing of the LEDs. The high-power LED array had ample illuminance but
generated so much heat that it required active cooling.
We developed a simple illumination module to provide diffuse IR light across a 50mm circle An LEDmounted on a “star” PCB (Op-
ulent LST-01F09-IR04-00, Mouser) provided ample light. Wemount each “star” LED with thermal adhesive to a small heat sink
(Ohmite SV-LED-325E) which in turn is glued to a Thorlabs adapter (SM1A6FW) to allows the wires to exit and the LED/heatsink to
connect to collimation and diffusion optics. The heat sink is machined (either with a Dremel hand-held tool or a mill) on one side to
allow the wires that power the LED to lie flat against the heatsink. We power multiple illumination modules in series using a con-
stant current LED driver (LuxDrive BuckBlock 1000mA). Our illumination setup generates negligible heat and our modules run
continuously for years.
Our imaging parameters are fixed across experiments and optimized to give the highest quality data we can achieve with our hard-
ware. The gain of the camera is set either to its lowest value or just above to minimize noise. Our exposure time is either 750 µsec or
1msec, allowing for a crisp image in the face of the fastest movements that fish can make. The illuminated area is circular, but the
image sensor size is rectangular. We therefore crop the sides of the image to produce a square that fits within the illuminated area.

Lens
Our choice of lens was guided by the need to balance different demands:
1. The longer the working distance, the greater the space needed between the sample and the lens. We wanted our apparatus to

fit length-wise on a 24 inch shelf, and so we needed to minimize the working distance.
2. The entire depth of the tank needs to be in focus, but not beyond that because we’d like to blur our LED.
3. The lens should be coated to pass IR light
4. The lens should be easy to mount to the base of the apparatus; mounting the lens instead of the camera allows drop-in replace-

ment of cameras from different manufacturers, which have different positions of the tripod mount relative to the sensor.
5. The lens should have a simple way to mount an IR-pass filter (e.g. common thread).
Unfortunately, we were not able to find a single lens that met all of these criteria. Instead, we adapted a 50mm (Edmund Optics
67717) lens by placing a small Thorlabs tube (ThorLabs SM1-L03) between the lens and the camera. Wemounted a 25mm IR pass
filter (ThorLabs FGL830) inside the Thorlabs tube. By moving the lens farther from the sensor we decreased the minimumworking
distance sufficiently. Finally, the Thorlabs tube allows us to mount the lens to the breadboard directly.

Behavioral arena
To maximize the amount of time the fish swam in a plane orthogonal to the camera, we used rectangular chambers. Initially we
chose glass colorimeter cuvettes (Starna Cells Inc, Atascadero CA): they are made of an inert material (glass) and come in a variety
of sizes. Due to supply chain issues, we switched to custom-fabricated chambers, plans attached. We now assemble these from
laser-cut acrylic, cementing a front and back side to a u-shaped piece that forms the other sides. These chambers are considerably
cheaper and less prone to breakage than glass and can be rapidly modified to allow for different experiments.

Enclosure
We designed a custom aluminum base with tapped holes for post-holders for the IR LED, chamber holder, and camera/lens/filter
holder. We used custom-cut extruded aluminum rails to frame the sides and top. The sides are made of black foam-core sized to fit



in grooves in the breadboard and rails. The top rails have a cross piece that holds the LED strip used to provide circadian lighting. All
parts are fabricated to order by Base Lab Tools Inc (Stroudsburg PA). The top is a steel tray fabricated to order by MetalsCut4U (Avon
Lake OH). Our current enclosure took roughly three months to prototype before settling on the final design.

Shelving and fleet organization
We have organized our fleet of apparatus to sit on mobile wire shelving. Currently, we use 36"x24"x81.5" adjustable wire shelving
units (McMaster Carr, Robbinsville NJ). We prefer to have the shelving on casters as it makes accessing the back of the units consid-
erably easier. Shelving is organized such that one computer and three apparatus sit on a single shelf. Enclosures on a given shelf are
color-coded (blue, gold, and red) so that each apparatus can be uniquely identified by a color/shelf/module combination; this also fa-
cilitates wire labeling. Each shelf has its own power strip that controls the computer, the IR lights, and the white LEDs; all strips plug
into a single uninterruptible power supply (APC SmartUPS 1000C).
Our aim in specifying module size was to ensure that multiple investigators could set up experiments simultaneously, and to min-
imize the cost One unit has four shelves so that a single “module” consists of four computers and twelve apparatus. Each mod-
ule has a dedicated monitor/keyboard/mouse on an adjacent desk, shared by the four computers using a KVM switch (IOGEAR
GCS1794). A module has its own dedicated unmanaged Ethernet switch (NETGEAR GS110MX) that allows Gigabit speed commu-
nication between computers and 10 Gigabit speed betweenmodules.

Computer hardware
Computer hardware was chosen to ensure adequate performance while minimizing cost, noise, and size. We found that building
our own computers was the only path forward in the face of supply chain issues and strict optimization criteria. We opted to build
around what was, at the time of writing, the previous generation of AMDmicroprocessors (Ryzen 7 5700G) cooled by a Noctua NH-
L9a-AM4 fan (to minimize acoustic noise). We chose a Mini-ITX form factor motherboard that allowed us to use a small case (Cooler
Master NR200). Other parts (64GB RAM, SSD, power supply) were chosen based on availability; a full parts list is attached (Table 1).
We recommend using https://www.pcpartpicker.com to minimize cost and ensure compatibility of different components. All com-
puters run Windows 10 Professional (Microsoft, RedmondWA).

APPENDIX 2: ACQUISITION SOFTWARE DESIGN PRINCIPLES

What we don’t measure
To extract the maximum amount of useful information about posture and locomotion with the minimum amount of overhead we
had to be selective about what wemeasure. Our imaging field is located in the center of the arena; fish that swim at the bottom,
top, or sides of the tank where there is a boundary are excluded from tracking. While multiple fish swim in the same arena, we do
not take data whenmore than one fish is in the imaging field to sidestep the need to track fish identity. Our arena is sized to allow
fish to swim freely but its shape (a rectangular solid) encourages fish to swim in line with the imaging plane; we exclude frames
where fish turn away from the field of view (i.e. are swimming towards/away from the camera). Finally, as we are not trying to cap-
ture the rapid propulsive undulations of the fish tail we opted to sample video at speeds better matched to these kinematics (160
Hz). Together, these choices allowed us to optimize our algorithms to achieve the speed necessary to process video in real-time.

Algorithms to measure posture and position
Our apparatus extracts the position and pitch orientation of zebrafish in real-time over days using a simple set of commonmachine
vision processing steps:
1. Measure the absolute difference between the current frame and the background (fish-free) image.
2. Threshold the difference image such that all small differences are set to zero.
3. Dilate the image three times in succession to remove any larger clumps that are still smaller than a fish.
4. Extract and quantify all particles in the image.
Below we detail a number of additional processing and optimization steps to ensure that we maximize useful data.

Measuring the pitch of the fish
To extract the pitch (the angle of the fish with respect to the horizon), we perform the following steps to ensure that the sign and
magnitude of the angle is correctly assigned:
1. Fit the particle with an ellipse and extract the angle of the long axis with respect to the horizon.
2. Threshold the original difference image again to identify the pixels that correspond to the head of the fish.
3. Using the head and body (X,Y) coordinates determine whether the fish was facing to the left or right.
4. Assign the correct angle and sign such that nose-up posture is always positive and nose-down is always negative.
These steps ensure that the data saved follows a simple and intuitive convention for posture.

Optimizations for speed
To optimize our code for speed, we use a set of thresholds to rapidly evaluate and reject frames
1. Before any processing, we sum the pixel values in the frame. If it is too low (no fish in frame) or too high (more than one fish in

the frame) we reject the frame.
2. After the particles are identified we reject the frame if a particle is touching the edge (fish partially out of frame), if there is more

than one particle (multiple fish) or if the length of the particle is too short (fish bending in/out of the field of view). We define an
epoch as a set of continuous frames that pass all our exclusion criteria (i.e. that contain a single fish in frame). Epoch duration is
tracked and, when too short, can be rejected.

In addition to optimizing the algorithm, we adopted a producer-consumer architecture to decouple video acquisition from video
processing and saving data. Our software runs two routines: the “producer,” which acquires frames from the camera and places
them in a queue in memory, and the “consumer” that extracts each frame from the queue and processes it in turn. Our program
monitors the size of the consumer buffer and, if it has less that 10% free, pauses the producer routine for 15 seconds to allow the
buffer to clear. In this configuration, the performance ceiling shifts from CPU speed (i.e. how quickly can a frame be processed) to
the amount of RAM available (i.e. howmany frames can be queued). At the time of writing this, doubling the amount of RAM is con-
siderably less expensive than doubling CPU performance. The choice of architecture thus brings down the cost of the computer.



Saving raw video
While the bulk of our experiments rely on real-time processing of video it is often useful to save the actual data. Further, we wanted
to be able to set user-defined criteria to determine in real-time which videos were worth saving. Leveraging the producer-consumer
architecture, our software contains a routine that independently buffers the frames being analyzed and, if, the video to be saved
meets user-defined criteria, will pass the frames to an independent program to write them to disk. For example, we can ensure
that the video to be saved is of a certain length. Similarly, we can filter the video images129 to determine if the target is in crisp fo-
cus (useful for larger arenas, or higher magnification) and only save high quality videos. By separating video writing from acquisition
and processing, comparatively slow operations such as video compression and/or saving video to a network-accessible shared drive
do not compromise performance.

Apparatus control software
Our algorithm relies on common andmature image processing routines and could be instantiated in any modern programming
language. Since we had run this algorithm for the better part of a decade we were confident that it was sufficiently stable to com-
pile into a distributed executable, which would greatly simplify deployment to a fleet of apparatus. Our original implementation
was written in LabVIEW (National Instruments, Austin TX) which was stable and accommodated all the lab’s hardware changes for
the past decade. We therefore opted to update the LabVIEW code, which we distribute both as source and executable versions.
Running the executable requires each computer to have the LabVIEW Runtime Engine (free download) installed, as well as a li-
cense for NI Vision Acquisition software (NI 778413-35) and the Vision Development Module Run-Time engine (NI 778044-35).

User interface
We designed the interface to enable easy initialization of experiments, rapid graphical and quantitative visualization of video pro-
cessing and performance, and to minimize error. Launching the executable starts the program, which allows the user to fill out var-
ious text, numeric, and drop-down fields that describe the experiment. The user then monitors the video feed until no fish are in
frame and then selects that image as the background. We have found that this initial bit of monitoring both compensates for slight
day-to-day differences in arena placement. More importantly, it forces the user to monitor the live feed at the beginning of each ex-
periment, a useful bit of mindfulness that minimizes lost data. Once running, the user can: monitor the output of each step in the
processing algorithm graphically, monitor the number of times the consumer buffer has overflowed (usually zero), update the text
fields, and stop the program. Hardware parameters are stored in a text file that can be easily edited directly. Experiment parameters
are similarly saved to text files and can be reloaded to save time.
We have implemented a number of user interface items to minimize confusion in the face of a fleet of instruments. First, we have
color-coded versions of the executable (blue, gold, and red) where the background clearly differentiates the version. Each version
has its own configuration file that, during setup, is coded to a particular apparatus. Thus the user is always aware of which apparatus
they are interfacing with based on color cues. Next, we added a “debug” button to the front panel that allows for direct monitoring
and editing of all program variables. In “debug” mode the user has the option to save raw video.

APPENDIX 3: HARDWARE ASSEMBLY GUIDE

In this Appendix, we walk through box assembly and recording settings. Refer to Appendix 5 for executing experiments and SAMPL
data analysis.

Hardware assembly
Our design of hardware allows connecting up to three SAMPL boxes to one computer while using one set of power supplies (for IR
LED and daylight LED). See Movie 1 for video instruction on box assembly.

1. Camera module
(a) Attach 1x 1.5 inch post (TR1.5) to the camera module holder (SM1RC). Screw in tightly.
(b) Assemble lens and camber. Sequentially connect parts below: camera lens, SM1A10 adapter, IR filter, SM1-L03 extension

tube, assembled camera module holder, SM1A9 adapter, and the camera.

2. IR illumination module
(a) Attach wired IR LED to the heatsink and SM1A6FW adaptor (see below for instruction).
(b) Carefully mount the condenser into SM2L05 tube.
(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube, SM1A2 adapter, SM2L20 tube, and

the mounted condenser.
(d) Tightly attach TR1 post to SM2RC holder.

3. Chamber holders
(a) Take off rubber covers on the tip of the screws on the chamber holders (FP01).
(b) Mount holders onto TR1 posts using 8-32 screws.
(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube, SM1A2 adapter, SM2L20 tube, and

the mounted condenser.
(d) Tightly attach TR1 post to SM2RC holder.

4. Put together the box
(a) Mount one of the short rails between two long rails using right angle brackets and T-nuts.
(b) Mount the other two short rails onto the long rails using slotted cubes and low-profile cap screws (SH25LP38).
(c) Adjust the position of the middle rail so that is approximately 13 cm away from one end of the frame.
(d) Attach post holders to the base plate using cap screws (SH25S038). Note that the one for the camera module is the longer

post holder (PH1.5).
(e) Mount 4 medium rails onto the base plate using standard cap screws.
(f) Insert all the modules onto the base plate. Connect USB cable to the camera.
(g) Make a notch in the middle of the shorter side of a small panel and insert it between the rails on the side of the camera

module.
(h) Insert 2 large side panels.



(i) Attach daylight LED to the top frame (see below for instruction).
(j) Pass IR and daylight LED wires through the front notch of the baseplate.
(k) Insert the front panel.
(l) Attach the top frame.

IR light wiring
Solder 2x 9” wires onto the IR LED “star.” Attach IR LEDs to heatsinks using HexaTherm tape. Note that in order to pass the wires
through the heatsinks and the SM1A6FW adapter on the opposite end, the ears of the Ohmite heatsink need to be trimmed down
a little. When done, attach the heatsink to the adapter using thermal epoxy. To simplify light wiring, we use one 1000mA Buck-
Block to dirve 3 IR lights in series for 3 boxes on the same level of the shelf. To do this, one needs 2x 7" wires to connect adjacent IR
cables and 1x 22" wire connecting the further IR to the BuckBlock. Use another 8" wire to connect the closest IR to the BuckBlock.
We recommend using XT60H connectos to link these wires to the IR light cables and connect wires to the BuckBlock for the ease of
troubleshooting and replacement. Finally, connect the BuckBlock to 12 V 2 A power supply through pigtail adaptors.

Daylight wiring
Each box uses a strip of 6 daylight LEDs. Our choice of daylight LED comes with double sided tape already attached to the back
side of the LED which is used to install LED strips to the top frame. To wire daylight LED strips, solder 2x 20" wires to the LED strip.
Heat shrink sleeves can be used here to strengthen connections. Twist the wires at the end close to the LED. This helps with cable
management in the box. Bend the cables 90 degrees in the XY plane (perpendicular to the illumination direction) so that the wires
won’t get into the field of view.
To simplify light wiring, we use one 12V 1A power supply to drive 3 LED strips in parallel. To do this, cut 1x 27" wire for connecting
the positive end of the DC plug to the LED strip. Prepare 3 wires for the negative end of the strips each measured 10", 18", and 27".
Insert one end of all three wires for the negative end into the negative terminal of a pigtail connector, connect the other ends to the
LED cables. For positive end, we recommend using T tap connectors (B085XGYW1B) which allows easy disconnection.

PC setup
Assemble computer parts. Make sure 1 PCI-e USB card is installed into each PC. Connect power cable and Ethernet cable. If de-
sired, connect 3 cameras to three different USB BUS on the PC: specifically, one to a PCI-e USB card, one to a USB 3.0/3.1 port on
the motherboard in the back of the PC, and one to a USB 3.0 port on the front panel. If desired, connect to the KVM switch.
Turn on the PC, setupWindows. If necessary, change settings below to achieve peak performance: select AMD High Performance in
Power Settings; set Sleep time to Never; set hard disk sleep time to 0 in Advanced Power Settings.

Install behavior programs
We provide three executable programs (Blue, Gold, Red) that can run simultaneously on the same PC. Refer to the Key Re-
sources Table for access to the programs. To install executables, download *.exe files and corresponding configuration files (*
Configuration.ini). Create a folder under C:/ andmove configuration files to C:/Data/. Install required NI software and activate:
LabVIEW Runtime, Vision Acquisition, and Vision Runtime. Restart computer.
Open NI Max, rename cameras to camBlue, camGold, and camRed. Set camera settings:

• Field of view - X: left = 360; resolution = 1216
• Field of view - Y: top = 0; resolution = 1200
• Under Acquisition attributes - Receive time stampmode = System time
• Under Camera attributes - Analog control - Gain = 1; Black level = 1 (if applicable)
• Under Acquisition Control - Exposure time = 1000; Trigger activation = Rising edge; Frame Rate = Freerun (for 166 Hz with our
cameras of choice, or set to desired frame rate)

Open configuration files and set box number to desired values. We use box number as a unique identifier for different behavior
boxes. Check camera name to make sure it’s the same as the corresponding camera names in NI Max.
Open behavior programs, now that you should see images showing up on the preview windows.

Camera calibration
Once the apparatus has been assembled and software has been installed, align the field of view (FOV) to the center of the IR light
circle. Raise or lower the post holding the camera module to center the FOV in Y and roll the module to level it.
Next, calibrate the scale of the FOV to 60 pixels/mm. To do this, secure a micrometer in a chamber and place it into the box. Snap a
picture of it using NI Max, then measure the scale using the image of the micrometer. If necessary, loosen the SM2RC adapter and
move the camera and lens forward or backward to achieve the correct scale.
Illumination adjustments should be completed with the behavioral arena in place. To calibrate exposure, first ensure the correct IR
light is in use and set the aperture ring between f/16. In NI Max, the peak of the image histogram peak should be around 128 (the
middle of the 8-bit range). If necessary, exposure can be reduced by lowering exposure time or increased by opening up aperture to
f/11.

Network setup
We use a Synology data server as a repository to store behavior data. Hard drives are setup as RAID 10. Each SAMPL rack has its
own ethernet switch, which can be connected to other switches as necessary.

APPENDIX 4: DATA ANALYSIS SOFTWARE

In this appendix, we discuss algorithms for the data analysis and plotting software. We assume that the user is working with data
from larval zebrafish here. If not, the specific parameters identified here are unlikely to translate as other organisms move differently
but can nonetheless be used as a starting point. Refer to Appendix 5 for instruction for use. Refer to the Key Resources Table for ac-
cess to the code.



Read DLM files
Each SAMPL session (from Start experiment to Stop) generates one tab-delimited (i.e. .dlm) file. Each time point appears as a row of
tab-separated values in the .dlm file. Columns, from left to right, are time stamp, fish number in the field of view (FOV), pitch angle
(0-90°), x coordinate for body, y coordinate for body, x coordinate for fish head, y coordinate for fish head, raw fish angle (0-180°),
epoch number, and estimated fish length.
Each .dlm’s data is loaded as a Pandas DataFrame for further analysis (see src/SAMPL_analysis/preprocessing/read_dlm.py for de-
tails). Each raw DataFrame contains multiple epochs. An epoch is defined as duration when a fish is detected in the FOV. See Ap-
pendix 1 for details on the algorithm for animal detection.

Extract epochs
We calculated swim attributes, such as angular velocity, swim speed, instantaneous displacement, etc., from recorded pitch angles
and fish body coordinates. To extract quality epochs from the recorded data, epochs are analyzed and passed through several qual-
ity control filters:

1. each epoch is truncated by 50ms at both the start and the end to eliminate frames when fish is entering/exiting the FOV;
2. epochs with duration shorter than 2.5 s are excluded (for 1 & 2, see function raw_filter());
3. epochs with frame drop greater than 3 frames are excluded;
4. epochs with direction of fish translocation opposite to where the head points toward are dropped (for 3 & 4, see function

dur_y_x_filter());
5. epochs with aberrant displacement jumps are excluded;
6. epochs with improbably large angular velocity greater than 250°/s or angular acceleration larger than 32000°/s2 are excluded

(for 5 & 6, see function displ_dist_vel_filter()).

All the processes above can be found in the script src/SAMPL_analysis/preprocessing/analyze_dlm_v4.py.

Get bout and inter-bout data
Epochs that pass the quality control are used to extract swim bouts using function grab_fish_angle() under
src/SAMPL_analysis/bout_
analysis/grab_fish_angle_v4.py.
We use a swim speed threshold of 5 mm/s to determine swim windows. Adjacent swim windows with intervals smaller than 100
ms are combined. Next, we find the time of the peak speed for each swim window and extract frames in a range of 500ms before
to 300ms after that. Inter-bout intervals (IBI) are determined as time between adjacent swim bouts with a 100ms buffer window
deducted from both the beginning and the end and IBI data is extracted accordingly. Baseline is considered the time during which
larvae swim slower than 2mm/s and baseline parameters are extracted accordingly.
Note that an epoch can only contain a single detected fish. The number of swim bouts extracted from an epoch various extensively
depending on the quality of the epoch (and behavior of fish). Having too many fish in the chamber may lead to low yields of aligned
bouts despite having a large number of epochs. For details of fish detection, refer to Appendix 1.

Export analyzed results
Numerous attributes are saved as DataFrames under keys in HDF5 format files using our analysis pipeline. Once the analysis is
complete, three output data files are generated: all_data.h5, bout_data.h5, and IEI_data.h5.
The all_data.h5 file contains epoch-based data including raw data from DLM files, epoch attributes, baseline angular velocity, etc.
The bout_data.h5 file includes bout attributes and aligned bout data such as pitch angles and speed. The IEI_data.h5 file contains
all inter-event interval (IEI) data, or IBI. Refer to docs/ for a complete list of saved attributes and their description. In addition, a meta-
data table including recording frame rate, number of aligned bouts, and other information is generated and saved to the same di-
rectory.
All results are saved as “long format” DataFrames with each row representing a time point or a bout/IEI, depending on the type of
the result (one value per timepoint vs per bout/IBI). Values of multiple aligned bouts are stored in successive rows.
All functions above can be called with script src/SAMPL_analysis/SAMPL_analysis.py. Refer to Appendix 5 for running instructions.
For a record of analyzed files, frame rate, number of aligned bouts, etc., refer to the log file generated under src/.

Load analyzed data and calculate parameters
We include several plot functions under src/SAMPL_visualization/ that calculate and plot all the parameters we report in the main
text. These functions require an input of a root directory containing analyzed data. For recommended behavior data structure, see
Appendix 5.
Once data is found, plot functions get frame rate frommetadata files and calculate the index of time of peak speed which is used
to calculate the number of aligned frames and initialize other constants. Note that plot functions only read one frame rate for all the
data to be plotted. Therefore, make sure all experiments are done at the same frame rate. To combine results from different frame
rates for plotting, extract parameters of interest separately for experiments with different frame rates and concatenate the results
afterwards. We only plot zeitgeber day data in this version of the code. Users may modify the day_night_split() function to extract
zeitgeber night results if intended.
To load analyzed swim bouts and IBI, we loop through all subfolders under the root directory and read DataFrames from HDF5 files,
extract and calculate desired parameters and concatenate results. Each plot function extracts parameters in different ways.
For time series values to be plotted as a function of time, data is loaded from the all_data.h5 file. The key prop_bout_aligned con-
tains propulsive bouts that have been aligned and grabbed_all includes all epochs that contain swim bouts. See plot_timeseries.py
for examples.
Bout parameters, such as speed, displacement, pitch angles and attack angles, are also extracted from prop_bout_aligned key con-
taining aligned swim bouts. We use a dedicated function for calculating these swim parameters: extract_bout_features_v4().
These parameters can be further used to get steering and righting gains. See get_kinetics() for more. Note that some parameters
are determined by specific time points (such as initial pitch, post-bout pitch, etc.). To determine frames that are the closest to these
time points, we use half round up for rounding.
IBI data is loaded from the IEI_data.h5 file under key prop_bout_IEI2. For bout timing estimation, we calculate bout frequencies as
reciprocals of bout intervals (IBIs). See plot_bout_timing.py and plot_IBIposture.py for examples.



To calculate fin-body coordination, users need to determine how the rotation is calculated. One way is to use rotation to time of
peak angular velocity which requires estimation of time of peak angular velocity. To do this, we first calculate angular velocity us-
ing smoothed pitch angles and adjust the signs so that values are positive before time of the peak speed. Median of angular veloc-
ity time series from the same experimental repeat (see Appendix 5 for data organization) is used to find time of peak angular ve-
locity. Lastly, we average results across experimental repeats to determine the peak angular velocity time. However, this calculation
requires a large amount of bout data. Alternatively, one may use a fixed value for time of peak angular velocity. Generally, we found
-50ms (50 ms before time of peak speed) to be a good value to use. Once the time of peak angular velocity is determined, rota-
tion is calculated by pitch change from 250ms before peak speed to time of peak angular velocity. Some scripts have the option to
sample data from each experimental repeats. See Appendix 5 for instruction.

Visualize results
We use the Seaborn package for data visualization130 . Each plotting script generates a folder under figures/ and saves figures as
PDFs. Below is a list of available plotting functions and their descriptions. For more details, refer to the README document.

1. plot_timeseries.py

plots basic parameters as a function of time. Modify all_features to select parameters to plot. This script contains two functions:
plot_aligned(), plot_raw(). Change variable all_features to select parameters to plot.

2. plot_parameters.py

plots swim parameter distribution and 2D distribution of parameters for kinetics calculation. This script contains function:
plot_parameters().

3. plot_IBIposture.py

plots Inter Bout Interval (IBI; aka inter-event interval, IEI) posture distribution and standard deviation. This script contains func-
tion: plot_IBIposture(). This script looks for prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles
during IBI. When input root directory contains multiple experimental repeats, the scripts allows sampling of IBIs from each re-
peat by specifying argument sample_bout.

4. plot_IBIposture.py

plots Inter Bout Interval (IBI; aka inter-event interval, IEI) posture distribution and standard deviation. This script contains func-
tion: plot_IBIposture(). This script looks for prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles
during IBI. When input root directory contains multiple experimental repeats, the scripts allows sampling of bouts from each re-
peat by specifying argument sample_bout.

5. plot_bout_timing.py

Plots bout frequency as a function of IBI pitch and fitted coefficients of function. This script contains function:
plot_bout_frequency(). When input root directory contains multiple experimental repeats, the scripts allows sampling of
bouts from each repeat by specifying argument sample_bout.

6. plot_kinematics.py

Plots righting gain, set point and steering gain. This script contains function: plot_kinetics(). When input root directory con-
tains multiple experimental repeats, the scripts allows sampling of bouts from each repeat by specifying argument sample_bout.

7. plot_fin_body_coordination.py

Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is calculated by pitch change from -250ms
to -40 ms. This script contains function: plot_fin_body_coordination(). For reliable sigmoid regression, 6000+ bouts is recom-
mended. When input root directory contains multiple experimental repeats, the scripts allows sampling of bouts from each re-
peat by specifying argument sample_bout.

8. plot_fin_body_coordination_byAngvelMax.py

Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is calculated by pitch change from -250ms to
time of max angular velocity. For reliable sigmoid regression, 6000+ bouts is recommended. When input root directory contains
multiple experimental repeats, the scripts allows sampling of bouts from each repeat by specifying argument sample_bout.

APPENDIX 5: STANDARD OPERATING PROCEDURE FOR RUNNING EXPERIMENTS AND ANALYZING DATAWITH SAMPL
In this appendix, we provide a step-by-step instruction for running experiments and analyzing SAMPL data. Refer to the Key Re-
sources Table for access to SAMPL analysis and visualization scripts.

Running an experiment
One typical SAMPL experiment contains two 24-hour sessions. We suggest running zebrafish larvae at one of 3 time points: 4-6
dpf, 7-9 dpf, or 14-16 dpf. Larvae should be given 30minutes of access to food before being placed into chambers. We suggest
putting 5-8 larvae into one standard chamber and 1-3 larvae in one narrow chamber to maximize data yield. Behavior recording
requires having a single fish in the FOV at a time. Appearance of additional larvae will disrupt fish detection. We suggest transfer-
ring 25-30/10-15ml E3medium into each standard/narrow chamber to account for evaporation andmaximize likelihood of fish
swimming in the FOV. Throughput of the apparatus can be found in Figure 2 (standard chamber based on 58 larvae; narrow cham-
ber based on 23 larvae).
With SAMPL, one computer can control up to three behavioral apparatus, or “boxes.” Once the fish chamber is put into the box and
secured, open the program (Blue, Gold, Red) corresponding to the box to run on the computer controlling the boxes. Enter exper-
imental information in the window opened: Genotype (experimental conditions), Cross ID, Fish number, etc. Set the destination
folder for data storage. Choose the desired Light-Dark (L/D) cycle from one of the followings: L/D, L/L, or D/D. Adjust daytime light
connection/timer accordingly. Use fish size toggle to select thresholds for fish detection: use Small fish for larvae younger than 12
dpf and Big fish for those that are older. To start recording, click Select Background when there’s no fish in the FOV.
Larvae older than 5 dpf should be fed every 24 hours with 1-2 ml of diluted cultured rotifers. To feed fish, click Stop program to stop
the current session. Feed with rotifers and allow a pause of 30 min before re-starting the experiment.
At the end of the experiment, click Stop program and remove fish from the box. Each session (from Start to Stop program) generates
one .dlm data file and a corresponding .ini metadata file.



Software requirement for data analysis
To analyze behavior data using code provided, one needs Python 3, analysis scripts, and various Python modules. An integrated de-
velopment environment (IDE) is recommended to edit, debug, and run the code. If you don’t have a personal preference, we rec-
ommend using Visual Studio Code (Microsoft). Analysis and visualization code was developed using Python 3. For the ease of pack-
age management, we suggest the use of environment management tools, such as miniconda.
The most recent version of the code we use to analyze SAMPL data can be found online at https://. Download the entire directory
by pressing the green Code button and downloading the ZIP file (orange box) so that you can make changes as needed for your
project. The src folder contains all scripts. The sample figures folder contains examples of plots from the visualization functions.
Please refer to the README for instructions and user guides.
To set up a virtual environment, open a new terminal or use the terminal in your IDE, and type:

conda create -n <myenv>

where <myenv> is substituted with any desired name for the environment. Next, activate this environment

conda activate <myenv>

and install packages required for analysis and plotting using

conda install <package>

Below is a list of required packages131–137 other than those included in Python 3.10.4:

- astropy=5.1
- pandas=1.4.4
- pytables=3.7.0
- matplotlib=3.5.2
- numpy=1.23.3
- scipy=1.9.1
- seaborn=0.12.0
- tqdm=4.64.1
- scikit-learn=1.1.1

For a complete list of packages, refer to the environment.yml file.

Bout analysis
Analysis and plotting scripts support two types of data structures. The first option is one root directory containing all data files:

root
data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

The second is a root directory containing subfolders with the necessary files indicating experimental repeats:
root

exp repeat 1
data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

exp repeat 2
data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

Run the analysis script .../src/SAMPL_analysis/SAMPL_analysis.py and input data directory (directory of the root folder) and the
frame rate as instructed. This function aligns bouts in .dlm files within a directory so that peak speed is at time 0ms, with 500ms
of activity before and 300ms of activity after. It is important to note that all files in the same subfolders under the input directory
will be combined to extract bout parameters. The analysis script will take the submitted directory and analyze all data files within it,
including all subfolders in its search, regardless of depth. Subfolders can be used to separate analyses, experimental conditions, or
repeats. Data with different frame rates should be analyzed separately to ensure proper parameter calculation, as only one can be
used at a time.
The program will skip the current .dlm file if it fails to detect a bout in it. However, errors are expected if files contain too little
recorded data to extract a bout. Therefore, we suggest removing any .dlm files that are smaller than 1 MB.
When analysis is done, it will save three data files (.h5), four catalog files (.csv), and twometadata files (.csv) under the same direc-
tory as the data is in. Below is an example of an analyzed directory:

root
data1.dlm
data1 parameters.ini
data2.dlm



data2 parameters.ini
all_data.h5
bout_data.h5
IEI_data.h5
analysis info.csv
root metadata.csv
catalog all_data.csv
catalog bout_data.csv
catalog IEI_data.csv
data_file_explained.csv

Visualizing results
After analysis, the scripts under the visualization folder are used to extract swim parameters and kinetics, and visualize them. For
more detailes, refer to Appendix 4 and the README document. Each function can be run individually and will ask for the directory
path to your data (see the Bout analysis section above). Alternatively, use plot_all.py to plot all figures.
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